Search results for: De Novo programming
856 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression
Procedia PDF Downloads 225855 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method
Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi
Abstract:
This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure
Procedia PDF Downloads 492854 Software Transactional Memory in a Dynamic Programming Language at Virtual Machine Level
Authors: Szu-Kai Hsu, Po-Ching Lin
Abstract:
As more and more multi-core processors emerge, traditional sequential programming paradigm no longer suffice. Yet only few modern dynamic programming languages can leverage such advantage. Ruby, for example, despite its wide adoption, only includes threads as a simple parallel primitive. The global virtual machine lock of official Ruby runtime makes it impossible to exploit full parallelism. Though various alternative Ruby implementations do eliminate the global virtual machine lock, they only provide developers dated locking mechanism for data synchronization. However, traditional locking mechanism error-prone by nature. Software Transactional Memory is one of the promising alternatives among others. This paper introduces a new virtual machine: GobiesVM to provide a native software transactional memory based solution for dynamic programming languages to exploit parallelism. We also proposed a simplified variation of Transactional Locking II algorithm. The empirical results of our experiments show that support of STM at virtual machine level enables developers to write straightforward code without compromising parallelism or sacrificing thread safety. Existing source code only requires minimal or even none modi cation, which allows developers to easily switch their legacy codebase to a parallel environment. The performance evaluations of GobiesVM also indicate the difference between sequential and parallel execution is significant.Keywords: global interpreter lock, ruby, software transactional memory, virtual machine
Procedia PDF Downloads 287853 Design and Implementation of a Monitoring System Using Arduino and MATLAB
Authors: Jonas P. Reges, Jessyca A. Bessa, Auzuir R. Alexandria
Abstract:
The research came up with the need of monitoring them of temperature and relative moisture in past work that enveloped the study of a greenhouse located in the Research and Extension Unit(UEPE). This research brought several unknowns that were resolved from bibliographical research. Based on the studies performed were found some monitoring methods, including the serial communication between the arduino and matlab which showed a great option due to the low cost. The project was conducted in two stages, the first, an algorithm was developed to the Arduino and Matlab, and second, the circuits were assembled and performed the monitoring tests the following variables: moisture, temperature, and distance. During testing it was possible to momentarily observe the change in the levels of monitored variables. The project showed satisfactory results, such as: real-time verification of the change of state variables, the low cost of acquisition of the prototype, possibility of easy change of programming for the execution of monitoring of other variables. Therefore, the project showed the possibility of monitoring through software and hardware that have easy programming and can be used in several areas. However, it is observed also the possibility of improving the project from a remote monitoring via Bluetooth or web server and through the control of monitored variables.Keywords: automation, monitoring, programming, arduino, matlab
Procedia PDF Downloads 517852 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics
Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi
Abstract:
Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3
Procedia PDF Downloads 149851 Cars Redistribution Optimization Problem in the Free-Float Car-Sharing
Authors: Amine Ait-Ouahmed, Didier Josselin, Fen Zhou
Abstract:
Free-Float car-sharing is an one-way car-sharing service where cars are available anytime and anywhere in the streets such that no dedicated stations are needed. This means that after driving a car you can park it anywhere. This car-sharing system creates an imbalance car distribution in the cites which can be regulated by staff agents through the redistribution of cars. In this paper, we aim to solve the car-reservation and agents traveling problem so that the number of successful cars’ reservations could be maximized. Beside, we also tend to minimize the distance traveled by agents for cars redistribution. To this end, we present a mixed integer linear programming formulation for the car-sharing problem.Keywords: one-way car-sharing, vehicle redistribution, car reservation, linear programming
Procedia PDF Downloads 349850 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap
Authors: Alex Contarino
Abstract:
Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.Keywords: linear programming, optimization, roster management, salary cap
Procedia PDF Downloads 111849 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 116848 Community Integration: Post-Secondary Education (PSE) and Library Programming
Authors: Leah Plocharczyk, Matthew Conner
Abstract:
This paper analyzes the relatively new trend of PSE programs which seek to provide education, vocational training, and a college experience to individuals with an intellectual and developmental disability (IDD). Specifically, the paper examines the degree of interaction between PSE programs and the libraries of their college campuses. Using ThinkCollege, a clearinghouse and advocate for PSE programs, the researchers identified 293 programs throughout the country. These were all contacted with an email survey asking them about the nature of their involvement, if any, with the academic libraries on their campus. Where indicated by the responses, the libraries of PSE programs were contacted for additional information about their programming. Responses to the survey questions were tabulated and analyzed quantitatively. Written comments were analyzed for themes which were then tabulated. This paper presents the results of this study. They show obvious preferences for library programming, such as group formal instruction, individual liaisons, embedded reference, and various instructional designs. These are discussed in terms of special education principles of mainstreaming, level of restriction, training demands and cost effectiveness. The work serves as a foundation for best practices that can advance the field.Keywords: disability studies, instructional design, universal design for learning, assessment methodology
Procedia PDF Downloads 70847 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 106846 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.Keywords: integer programming, mixed integer programming, multi-objective optimization, Reliability Redundancy Allocation
Procedia PDF Downloads 172845 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firmsKeywords: aggregate production planning, trial and error, linear programming, furniture industry
Procedia PDF Downloads 560844 An Analytical Method for Maintenance Cost Estimating Relationships of Helicopters Using Linear Programming
Authors: Meesun Sun, Yongmin Kim
Abstract:
Estimating maintenance cost is crucial in defense management because it affects military budgets and availability of equipment. When it comes to estimating maintenance cost of the deployed equipment, time series forecasting can be applied with the actual historical cost data. It is more difficult issue to estimate maintenance cost of new equipment for which the actual costs are not provided. In this underlying context, this study proposes an analytical method for maintenance cost estimating relationships (CERs) development of helicopters using linear programming. The CERs can be applied to a new helicopter because they use non-cost independent variables such as the number of engines, the empty weight and so on. In the Republic of Korea, the maintenance cost of new equipment has been usually estimated by reflecting maintenance cost to unit price ratio of the legacy equipment. This study confirms that the CERs perform well for the 10 types of airmobile helicopters in terms of mean absolute percentage error by applying leave-one-out cross-validation. The suggested method is very useful to estimate the maintenance cost of new equipment and can help in the affordability assessment of acquisition program portfolios for total life cycle systems management.Keywords: affordability analysis, cost estimating relationship, helicopter, linear programming, maintenance cost
Procedia PDF Downloads 139843 Petra: Simplified, Scalable Verification Using an Object-Oriented, Compositional Process Calculus
Authors: Aran Hakki, Corina Cirstea, Julian Rathke
Abstract:
Formal methods are yet to be utilized in mainstream software development due to issues in scaling and implementation costs. This work is about developing a scalable, simplified, pragmatic, formal software development method with strong correctness properties and guarantees that are easy prove. The method aims to be easy to learn, use and apply without extensive training and experience in formal methods. Petra is proposed as an object-oriented, process calculus with composable data types and sequential/parallel processes. Petra has a simple denotational semantics, which includes a definition of Correct by Construction. The aim is for Petra is to be standard which can be implemented to execute on various mainstream programming platforms such as Java. Work towards an implementation of Petra as a Java EDSL (Embedded Domain Specific Language) is also discussed.Keywords: compositionality, formal method, software verification, Java, denotational semantics, rewriting systems, rewriting semantics, parallel processing, object-oriented programming, OOP, programming language, correct by construction
Procedia PDF Downloads 146842 The Case for Creativity in the Metaverse
Authors: D. van der Merwe
Abstract:
As the environment and associated media in which creativity is expressed transitions towards digital spaces, that same creativity undergoes a transition from individual to social forms of expression. This paper explores how the emerging social construction collectively called ‘The Metaverse’ will fundamentally alter creativity: by examining creativity as a social rather than individual process, as well as the mimetic logic underlying the platforms in which this creativity is expressed, a crisis in identity, commodification and social programming is revealed wherein the artist is more a commodity than their creations, resulting in prosthetic personalities pandering to an economic logic driven by biased algorithms. Consequently the very aura of the art and creative media produced within the digital domain must be re-assessed in terms of its cultural and exhibition value.Keywords: aura, commodification, creativity, metaverse, mimesis, social programming
Procedia PDF Downloads 14841 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques
Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar
Abstract:
This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI
Procedia PDF Downloads 95840 Application of Gene Expression Programming (GEP) in Predicting Uniaxial Compressive Strength of Pyroclastic Rocks
Authors: İsmail İnce, Mustafa Fener, Sair Kahraman
Abstract:
The uniaxial compressive strength (UCS) of rocks is an important input parameter for the design of rock engineering project. Compressive strength can be determined in the laboratory using the uniaxial compressive strength (UCS) test. Although the test is relatively simple, the method is time consuming and expensive. Therefore many researchers have tried to assess the uniaxial compressive strength values of rocks via relatively simple and indirect tests (e.g. point load strength test, Schmidt Hammer hardness rebound test, P-wave velocity test, etc.). Pyroclastic rocks are widely exposed in the various regions of the world. Cappadocia region located in the Central Anatolia is one of the most spectacular cite of these regions. It is important to determine the mechanical behaviour of the pyroclastic rocks due to their ease of carving, heat insulation properties and building some civil engineering constructions in them. The purpose of this study is to estimate a widely varying uniaxial strength of pyroclastic rocks from Cappadocia region by means of point load strength, porosity, dry density and saturated density tests utilizing gene expression programming.Keywords: pyroclastic rocks, uniaxial compressive strength, gene expression programming (GEP, Cappadocia region
Procedia PDF Downloads 342839 Programming with Grammars
Authors: Peter M. Maurer Maurer
Abstract:
DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation
Procedia PDF Downloads 149838 One-Way Electric Vehicle Carsharing in an Urban Area with Vehicle-To-Grid Option
Authors: Cem Isik Dogru, Salih Tekin, Kursad Derinkuyu
Abstract:
Electric vehicle (EV) carsharing is an alternative method to tackle urban transportation problems. This method can be applied by several options. One of the options is the one-way carsharing, which allow an EV to be taken at a designated location and leaving it on another specified location customer desires. Although it may increase users’ satisfaction, the issues, namely, demand dissatisfaction, relocation of EVs and charging schedules, must be dealt with. Also, excessive electricity has to be stored in batteries of EVs. To cope with aforementioned issues, two-step mixed integer programming (MIP) model is proposed. In first step, the integer programming model is used to determine amount of electricity to be sold to the grid in terms of time periods for extra profit. Determined amounts are provided from the batteries of EVs. Also, this step works in day-ahead electricity markets with forecast of periodical electricity prices. In second step, other MIP model optimizes daily operations of one-way carsharing: charging-discharging schedules, relocation of EVs to serve more demand and renting to maximize the profit of EV fleet owner. Due to complexity of the models, heuristic methods are introduced to attain a feasible solution and different price information scenarios are compared.Keywords: electric vehicles, forecasting, mixed integer programming, one-way carsharing
Procedia PDF Downloads 130837 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell
Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz
Abstract:
Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.Keywords: robotic, automated, production, offline programming, CAD
Procedia PDF Downloads 388836 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.Keywords: arduino, computational thinking, computer programming, Labview, self-efficacy, STEM
Procedia PDF Downloads 114835 Support Vector Regression with Weighted Least Absolute Deviations
Authors: Kang-Mo Jung
Abstract:
Least squares support vector machine (LS-SVM) is a penalized regression which considers both fitting and generalization ability of a model. However, the squared loss function is very sensitive to even single outlier. We proposed a weighted absolute deviation loss function for the robustness of the estimates in least absolute deviation support vector machine. The proposed estimates can be obtained by a quadratic programming algorithm. Numerical experiments on simulated datasets show that the proposed algorithm is competitive in view of robustness to outliers.Keywords: least absolute deviation, quadratic programming, robustness, support vector machine, weight
Procedia PDF Downloads 527834 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 418833 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 423832 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress
Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen
Abstract:
Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq
Procedia PDF Downloads 393831 Grid Computing for Multi-Objective Optimization Problems
Authors: Aouaouche Elmaouhab, Hassina Beggar
Abstract:
Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing
Procedia PDF Downloads 486830 Multi Objective Near-Optimal Trajectory Planning of Mobile Robot
Authors: Amar Khoukhi, Mohamed Shahab
Abstract:
This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization.Keywords: multi-objective control, non-holonomic systems, mobile robots, nonlinear programming, motion planning, B-spline, genetic algorithm
Procedia PDF Downloads 370829 Apps Reduce the Cost of Construction
Authors: Ali Mohammadi
Abstract:
Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.Keywords: layout, as-bilt, monitoring, maps
Procedia PDF Downloads 67828 Supplier Selection by Considering Cost and Reliability
Authors: K. -H. Yang
Abstract:
Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection
Procedia PDF Downloads 384827 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI
Authors: Genady Grabarnik, Serge Yaskolko
Abstract:
Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education
Procedia PDF Downloads 58