Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6127

Search results for: measurement accuracy

4387 Enhancing Healthcare Data Protection and Security

Authors: Joseph Udofia, Isaac Olufadewa

Abstract:

Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.

Keywords: cloud security, healthcare, cybersecurity, policy and standard

Procedia PDF Downloads 93
4386 Design and Construction of Temperature and Humidity Control Channel for a Bacteriological Incubator

Authors: Carlos R. Duharte Rodríguez, Ibrain Ceballo Acosta, Carmen B. Busoch Morlán, Angel Regueiro Gómez, Annet Martinez Hernández

Abstract:

This work shows the designing and characterization of a prototype of laboratory incubator as support of research in Microbiology, in particular during studies of bacterial growth in biological samples, with the help of optic methods (Turbidimetry) and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of sensors and analogue components of every channel, controlled with help of a microcontroller AT89C51 (ATMEL) with adequate benefits for this type of application.

Keywords: microbiology, bacterial growth, incubation station, microorganisms

Procedia PDF Downloads 403
4385 ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell

Authors: S. Limpattayanate, M. Hunsom

Abstract:

A comparison of activity and stability of the as-formed Pt/C, Pt-Co, and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single proton exchange membrane (PEM) fuel cell, the oxygen reduction reaction (ORR) activity of the Pt-M/C electro catalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C>Pt-Co/C>Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electro chemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt-Pd/C was the most stable than the other three electrocatalysts.

Keywords: ORR activity, stability, Pt-based electrocatalysts, PEM fuel cell

Procedia PDF Downloads 448
4384 Detonating Culture, Statistics and Development in Imo State of Nigeria

Authors: Ugiri Ejikeme

Abstract:

In an executive summary, UNESCO describes Framework for Cultural Statistics as a tool for organizing cultural statistics both nationally and internationally. This is based on conceptual foundation and a common understanding of culture that will enable the measurement of a wide range of cultural expressions. This means therefore that cultural expression in whatever guise has the potentiality of contributing reasonably to the development of a given society. The paper looked into the various tangible and intangible cultures in Imo State of Nigeria. Due to government’s insensitivity, there is need to remind ourselves of the need to pay adequate attention to the cultural heritage bequeathed to us by our forefathers for the sake of posterity. Documenting this information in written form therefore becomes imperative. The study concludes that culture if developed, could reasonably contribute to economic and social growth of the society.

Keywords: detonating culture, statistics and development, Imo State, Nigeria

Procedia PDF Downloads 488
4383 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation

Authors: Yuechao Lei, Lei Zhang

Abstract:

The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.

Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay

Procedia PDF Downloads 48
4382 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 91
4381 Use of Recycled PVB as a Protection against Carbonation

Authors: Michael Tupý, Vít Petránek

Abstract:

The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.

Keywords: windshield, poly(vinyl butyral), mortar, diffusion, carbonatation, polymer waste

Procedia PDF Downloads 424
4380 A Non-Iterative Shape Reconstruction of an Interface from Boundary Measurement

Authors: Mourad Hrizi

Abstract:

In this paper, we study the inverse problem of reconstructing an interior interface D appearing in the elliptic partial differential equation: Δu+χ(D)u=0 from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown subdomain D is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method.

Keywords: inverse problem, topological optimization, topological gradient, Kohn-Vogelius formulation

Procedia PDF Downloads 245
4379 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 204
4378 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 290
4377 Cost-Effective Soft Lithography of Organic Semiconductors in Organic Field-Effect Transistors (OFETs)

Authors: Tae Kyu An

Abstract:

We demonstrate repurposing linear micropatterns on the CD as a master mold to fabricate TIPS-PEN microwires. From the micropatterns on CDs, we replicated polyurethane acrylate (PUA) templates which are robust and flexible until submicrometer scale patterns. Subsequently, 1.5 μm TIPS-PEN microwires separated by 1.5 μm were grown. Using crystal analysis tools with polarized optical microscopy and X-ray diffraction measurement, it was revealed that each TIPS-PEN microwires are highly crystalline and uniform compared to spin-coated films. It is attributed to the template-guided growth of TIPS-PEN crystals along the linear template, thus the OFETs comprised of TIPS-PEN microwires displayed the high field-effect mobility.

Keywords: compact disk, macro patterning, OFET, soft lithography

Procedia PDF Downloads 241
4376 Investigating the Effect of VR, Time Study and Ergonomics on the Design of Industrial Workstations

Authors: Aydin Azizi, Poorya Ghafoorpoor Yazdi

Abstract:

This paper presents the review of the studies on the ergonomics, virtual reality, and work measurement (time study) at the industrial workstations because each of these three individual techniques can be used to improve the design of workstations and task position. The objective of this paper is to give an overall literature review that if there is any relation between these three different techniques. Therefore, it is so important to review the scientific studies to find a better and effective way for improving design of workstations. On the other hand, manufacturers found that instead of using one of the approaches, utilizing the combination of these individual techniques are more effective to reduce the cost and production time.

Keywords: ergonomics, time study, virtual reality, workplace

Procedia PDF Downloads 120
4375 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 111
4374 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 129
4373 Computational Fluid Dynamics Analysis for Radon Dispersion Study and Mitigation

Authors: A. K. Visnuprasad, P. J. Jojo, Reshma Bhaskaran

Abstract:

Computational fluid dynamics (CFD) is used to simulate the distribution of indoor radon concentration in a living room with elevated levels of radon concentration which varies from 22 Bqm-3 to 1533 Bqm-3 in 24 hours. Finite volume method (FVM) was used for the simulation. The simulation results were experimentally validated at 16 points in two horizontal planes (y=1.4m & y=2.0m) using pin-hole dosimeters and at 3 points using scintillation radon monitor (SRM). Passive measurement using pin-hole dosimeters were performed in all seasons. Another simulation was done to find a suitable position for a passive ventilation system for the effective mitigation of radon.

Keywords: indoor radon, computational fluid dynamics, radon flux, ventilation rate, pin-hole dosimeter

Procedia PDF Downloads 413
4372 Knowledge Management: Why is So Difficult? From “A Good Idea” to Organizational Contribute

Authors: Lisandro Blas, Héctor Tamanini

Abstract:

From earliest 90 to now, no many companies or organization can “really” implement a knowledge management (KM) system that works (no only viewed from a measurement model, but in this continuity). Which are the reasons of that? Some of the reason maybe could be embedded in how KM is demanded (usefulness, priority, experts, a definition of KM) vs the importance and resources that the organizations afford (budget, responsible of a specific area of KM, intangibility). Many organizations “claim” the importance of Knowledge Management but thhese demands are not reflecting these claims in their future actions. With another’s tools or managements ideas the organizations put the economics and human resources to work. Why it´s not occur in KM? This paper tray to explain some of this reasons and tray to deal with this situations through a survey done in 2011 for a IAPG (Argentinean Institute from Oil & Gas) Congress.

Keywords: knowledge management into organizations, new perspectives, failure in implementation, claim

Procedia PDF Downloads 421
4371 Approximating a Funicular Shape with a Translational Surface, Example of a Glass Canopy

Authors: Raphaël Menard, Etienne Fayette, Paul Azzopardi

Abstract:

This paper presents the method to generate the geometry of an actual glass canopy project in Rennes, France, by architect Bruno Gaudin, with aim to achieve the best structural efficiency possible using only quadrangle meshing. The paper includes equation of the translational surface generated, the level of accuracy in approximating the funicular shape and the method of constructive implementation.

Keywords: funicular shape, glass canopy, glass panels, lowered arches, mathematics, penalization, shell structure

Procedia PDF Downloads 554
4370 Field Environment Sensing and Modeling for Pears towards Precision Agriculture

Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani

Abstract:

The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.

Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model

Procedia PDF Downloads 314
4369 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 214
4368 Numerical Calculation of Heat Transfer in Water Heater

Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala

Abstract:

This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation, and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. Results show that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.

Keywords: heat exchanger, heat transfer rate, numerical calculation, thermal images

Procedia PDF Downloads 617
4367 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 538
4366 Combination of Plantar Pressure and Star Excursion Balance Test for Evaluation of Dynamic Posture Control on High-Heeled Shoes

Authors: Yan Zhang, Jan Awrejcewicz, Lin Fu

Abstract:

High-heeled shoes force the foot into plantar flexion position resulting in foot arch rising and disturbance of the articular congruence between the talus and tibiofibular mortice, all of which may increase the challenge of balance maintenance. Plantar pressure distribution of the stance limb during the star excursion balance test (SEBT) contributes to the understanding of potential sources of reaching excursions in SEBT. The purpose of this study is to evaluate the dynamic posture control while wearing high-heeled shoes using SEBT in a combination of plantar pressure measurement. Twenty healthy young females were recruited. Shoes of three heel heights were used: flat (0.8 cm), low (4.0 cm), high (6.6 cm). The testing grid of SEBT consists of three lines extending out at 120° from each other, which were defined as anterior, posteromedial, and posterolateral directions. Participants were instructed to stand on their dominant limb with the heel in the middle of the testing grid and hands on hips and to reach the non-stance limb as far as possible towards each direction. The distal portion of the reaching limb lightly touched the ground without shifting weight. Then returned the reaching limb to the beginning position. The excursion distances were normalized to leg length. The insole plantar measurement system was used to record peak pressure, contact area, and pressure-time integral of the stance limb. Results showed that normalized excursion distance decreased significantly as heel height increased. The changes of plantar pressure in SEBT as heel height increased were more obvious in the medial forefoot (MF), medial midfoot (MM), rearfoot areas. At MF, the peak pressure and pressure-time integral of low and high shoes increased significantly compared with that of flat shoes, while the contact area decreased significantly as heel height increased. At MM, peak pressure, contact area, and pressure-time integral of high and low shoes were significantly lower than that of flat shoes. To reduce posture instability, the stance limb plantar loading shifted to medial forefoot. Knowledge of this study identified dynamic posture control deficits while wearing high-heeled shoes and the critical role of the medial forefoot in dynamic balance maintenance.

Keywords: dynamic posture control, high-heeled shoes, plantar pressure, star excursion balance test.

Procedia PDF Downloads 135
4365 AI Features in Netflix

Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji

Abstract:

The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.

Keywords: easy accessibility, recommends, accuracy, privacy

Procedia PDF Downloads 65
4364 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 208
4363 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 386
4362 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 263
4361 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 31
4360 Compensation of Cable Attenuation in Step Current Generators to Enable the Convolution Method for Calibration of Current Transducers

Authors: P. Treyer, M. Kujda, H. Urs

Abstract:

The purpose of this paper is to digitally compensate for the apparent discharge time constant of the coaxial cable so that the current step response is flat and can be used to calibrate current transducers using the convolution method. For proper use of convolution, the step response record length is required to be at least the same as the waveform duration to be evaluated. The current step generator based on the cable discharge is compared to the Blumlein generator. Moreover, the influence of each component of the system on the performance of the step is described, which allows building the appropriate measurement set-up. In the end, the calibration of current viewing resistors dedicated to high current impulse is computed.

Keywords: Blumlein generator, cable attenuation, convolution, current step generator

Procedia PDF Downloads 150
4359 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 41
4358 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 76