Search results for: wall of wind
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2384

Search results for: wall of wind

674 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai

Authors: Sukovatov K.Yu., Bezuglova N.N.

Abstract:

Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.

Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence

Procedia PDF Downloads 164
673 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi

Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.

Abstract:

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.

Keywords: ecological farming system, energy simulation, evaporative cooling system, temperature, treated waste water, temperature

Procedia PDF Downloads 234
672 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.

Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)

Procedia PDF Downloads 311
671 Uncertainty in Near-Term Global Surface Warming Linked to Pacific Trade Wind Variability

Authors: M. Hadi Bordbar, Matthew England, Alex Sen Gupta, Agus Santoso, Andrea Taschetto, Thomas Martin, Wonsun Park, Mojib Latif

Abstract:

Climate models generally simulate long-term reductions in the Pacific Walker Circulation with increasing atmospheric greenhouse gases. However, over two recent decades (1992-2011) there was a strong intensification of the Pacific Trade Winds that is linked with a slowdown in global surface warming. Using large ensembles of multiple climate models forced by increasing atmospheric greenhouse gas concentrations and starting from different ocean and/or atmospheric initial conditions, we reveal very diverse 20-year trends in the tropical Pacific climate associated with a considerable uncertainty in the globally averaged surface air temperature (SAT) in each model ensemble. This result suggests low confidence in our ability to accurately predict SAT trends over 20-year timescale only from external forcing. We show, however, that the uncertainty can be reduced when the initial oceanic state is adequately known and well represented in the model. Our analyses suggest that internal variability in the Pacific trade winds can mask the anthropogenic signal over a 20-year time frame, and drive transitions between periods of accelerated global warming and temporary slowdown periods.

Keywords: trade winds, walker circulation, hiatus in the global surface warming, internal climate variability

Procedia PDF Downloads 248
670 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Authors: H. Rahman, T. Donchev, D. Petkova

Abstract:

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Keywords: shear walls, internal fibre reinforced polymer reinforcement, cyclic loading, energy dissipation, seismic behaviour

Procedia PDF Downloads 112
669 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 229
668 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 54
667 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot

Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes

Abstract:

The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.

Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index

Procedia PDF Downloads 160
666 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 451
665 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids

Procedia PDF Downloads 119
664 Functional Expression and Characterization of a Novel Indigenous Endo-Beta 1,4- Glucanase from Apis mellifera

Authors: Amtul Jamil Sami

Abstract:

Apis mellifera is an insect of immense economic importance lives on rich carbohydrate diet including cellulose, nectar, honey and pollen. The carbohydrate metabolism in A mellifera has not been understood fully, as there are no data available, on the functional expression of cellulase gene. The cellulose hydrolyzing enzyme is required for the digestion of pollen cellulose wall, to release the important nutrients (amino acids, minerals, vitamins etc.) from the pollen. A dissection of Apis genome had revealed that there is one gene present for the expression of endo-beta-1,4-glucanase, for cellulose hydrolysis. In the presented work, functional expression of endo-beta-1,4 glucanase gene is reported. Total soluble proteins of the honey bee were isolated and were tested cellulose hydrolyzing enzyme activity, using carboxy-methyl cellulose, as a substrate. A mellifera proteins were able to hydrolyze carboxy-methyl cellulose, confirming its endo- type mode of action. Endo beta-1,4 glucanase enzyme was only present in the gut tissues, no activity was detected in the salivary glands. The pH optima of the enzyme were in the acidic pH range of 4-5-5-0, indicating its metabolic role in the acidic stomach of A mellifera. The reported enzyme is unique, as endo-beta- 1,4 glucanase was able to generate non reducing sugar, as an end product. The results presented, are supportive to the information that the honey bee is capable of producing its novel endo-beta-1,4 glucanase. Further it could be helpful, in understanding, the carbohydrate metabolism in A mellifera.

Keywords: honey bees, Endo-beta 1, 4- glucanase, Apis mellifera, functional expression

Procedia PDF Downloads 382
663 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 278
662 Identification and Characterization of Enterobacter cloacae, New Soft Rot Causing Pathogen of Radish in India

Authors: B. S. Chandrashekar, M. K. Prasannakumar, P. Buela Parivallal, Sahana N. Banakar, Swathi S. Patil, H. B. Mahesh, D. Pramesh

Abstract:

Bacterial soft rot is one of the most often seen diseases in many plant species globally, resulting in considerable yield loss. Radish roots with dark water-soaked lesions, maceration of tissue, and a foul odour were collected in the Kolar region, India. Two isolates were obtained from rotted samples that demonstrated morphologically unpigmented, white mucoid convex colonies on nutrient agar medium. The isolated bacteria (RDH1 and RDH3) were gram-negative, rod-shaped bacteria with biochemically distinct characteristics similar to the type culture of Enterobacter cloacae ATCC13047 and Bergy's handbook of determinative bacteriology. The 16s rRNA gene was used to identify Enterobacter species. On carrot, potato, tomato, chilli, bell pepper, knolkhol, cauliflower, cabbage, and cucumber slices, the Koch′s postulates were fulfilled, and the pathogen was also pathogenic on radish, cauliflower, and cabbage seedlings were grown in a glasshouse. After 36 hours, both isolates exhibited a hypersensitive sensitivity to Nicotianatabacum. Semi-quantitative analysis revealed that cell wall degrading enzymes (CWDEs) such as pectin lyase, polygalacturonase, and cellulase (p=1.4e09) contributed to pathogenicity, whereas isolates produced biofilms (p=4.3e-11) that help in host adhesion. This is the first report in India of radish soft rot caused by E. cloacae.

Keywords: soft rot, enterobacter cloacae, 16S rRNA, nicotiana tabacum, and pathogenicity

Procedia PDF Downloads 108
661 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.

Keywords: borescope, engine, long-wave-infrared, sensor

Procedia PDF Downloads 116
660 Cost Effective Intraoperative Mri for Cranial and Spinal Cases Using Pre-Existing Three Side Open Mri-Adjacent to Operation Theater = Since-2005

Authors: V. K. Tewari, M. Hussain, H. K. D.Gupta

Abstract:

Aims/Background: The existing Intraoperative-MRI(IMRI) of developed countries is too costly to be utilized in any developing country. We have used the preexisting 3-side open 0.2-tesla MRI for IMRI in India so that the maximum benefit of the goal of IMRI is attained with cost effective state of the art surgeries. Material/Methods: We have operated 36-cases since 13thNov2005 via IMRI to till date. The table of MRI is used as an operating table which can be taken to the P3 level and as and when we require MRI to be done then the table can slide to P1 level so that the intraoperative monitoring can be done. The oxygen/nitrous tubes were taken out from vent made in the wall of the MRI room to outside. The small handy Boyel’s trolley was taken inside the MRI room with a small monitor. Anesthesia is been given in the MRI room itself. Usual skin markings were given with the help of scout MRI fields so the preciseness is increased. Craniotomy flap raised or the laminectomy and the dura opened in the similar fashion by same instruments as for the non IMRI case. Now corticectomy is planned after the T1 contrast image to localize and minimize the cortical resection. Staged and multiple P3 to P1 position and vice versa is planned respectively so that the resection is optimized to around 0.5 mm for radiotherapy. Immediate preclosure hematoma and edemas can be differentiated and cared for it. Results: Same MRI images as compared to highly expensive MRI of western world are achieved. Conclusion: 0.2 tesla Intraoperative MRI can be used for operative work for cranial and spinal cases easily with highly cost effectiveness.

Keywords: intraoperative MRI, 0.2 tesla intraoperative MRI, cost effective intraoperative MRI, medical and health sciences

Procedia PDF Downloads 435
659 Effects of Monofin Training on Left Ventricular Performance in Elite Egyptian Children Athletes

Authors: Magdy Abouzeid

Abstract:

Objectives: The aim of this study was to examine the influence of Monofin training, 36 weeks, 6 times per week, 90 min/unit on left ventricular performance in elite Egyptian Monofin athletes. Background: The elite athletes are one who has superior athletic talent. Monofin swimming already provide the most efficient way of swimming for human being, it is an aquatics sport practice on the surface or under water. Methods :To study these effects,14 elite Monofin children(3 girls and 11boys) aged(11.95± 1.09yr) HT (153.07± 4.2 cm) , WT(52.4 ± 3.7 kg ) , body surface area (BSA.m2 1.48 ± 5.6 m2 ) took part in long-term Monofin Training(LTMT).All subjects underwent two-dimension and M-mode Echordiography at rest before and after(LTMT). Results: There was significant difference (P < 0.01) and percentage improvement for all echocardiography parameter after (LTMT). Inter ventricular septal thickness in diastole and in systole increased by 27.9 % and 42.75 %. Left ventricular end systolic dimension and diastole increased by 16.81 % and 42.7 % respectively. Posterior wall thickness in systole was very highly increased by 283.3 % and in diastole increased by 51.78 %. Left ventricular mass in diastole and in systole increased by 44.8 % and 40.1 % respectively. Stroke volume and resting heart rate (HR) significant changed (sv) 25 %, (HR) 14.7 %. Conclusion: Monofin training is an effective sport to enhance ‘Heart athlete's’ for children, because the unique swim fin tool and create propulsion and overcome resistance. Further researches are needed to determine the effects of Monofin training on right ventricular in child athletes.

Keywords: prepubertal, monofin training, heart athlete's, elite child athlete, echocardiography

Procedia PDF Downloads 304
658 Post Coronary Artery Stenting Reflighting: Need for Change in Policy with Changing Antiplatelet Therapy

Authors: Keshavamurthy Ganapathy Bhat, Manvinderpal Singh Marwaha

Abstract:

Background: Coronary artery Disease (CAD) is a common cause of morbidity, mortality and reason for unfitness amongst aircrew. Coronary angioplasty and stenting are the standard of care for CAD. Antiplatelet drugs like Aspirin and Clopidogrel(Dual Antiplatelet therapy) are routinely prescribed post-stenting which are permitted for flying. However, in the recent past, Ticagrelor is being used in place of Clopidogrel as per ACC AHA and ESC guidelines. However Ticagrelor is not permitted for flying. Case Presentation: A 55-year-old pilot suffered Anterior Wall Myocardial Infarction. Angiography showed blockages in Left Anterior Descending Artery(LAD) and Right coronary artery (RCA). He underwent primary angioplasty and stenting LAD and subsequent stenting to RCA. Recovery was uneventful. One year later he was asymptomatic with normal Left ventricular function and no reversible perfusion defect on stress MPI. He had patent stents and coronaries on check angiogram. However, he was not allowed to fly since he was on Ticagrelor. He had to be switched over to Clopidogrel from Ticagrelor one year after stenting to permit him for flying. Similarly, switching had to be done in a 45-year-old pilot. Ticagrelor has been proven to be more effective than clopidogrel and as safe as Clopidogrel in preventing stent thrombosis. If Clopidogrel is being permitted, there is no need to restrict Ticagrelor. Hence "Policy" needs to be changed. Conclusions: Dual Antiplatelet therapy is the standard of care post coronary stenting which has been proved safe and effective. Policy needs to be changed to permit flying with Ticagrelor which is more effective than Clopidogrel and equally safe.

Keywords: antiplatelet drugs, coronary artery disease, stenting, ticagrelor

Procedia PDF Downloads 154
657 Unattended Crowdsensing Method to Monitor the Quality Condition of Dirt Roads

Authors: Matias Micheletto, Rodrigo Santos, Sergio F. Ochoa

Abstract:

In developing countries, the most roads in rural areas are dirt road. They require frequent maintenance since are affected by erosive events, such as rain or wind, and the transit of heavy-weight trucks and machinery. Early detection of damages on the road condition is a key aspect, since it allows to reduce the main-tenance time and cost, and also the limitations for other vehicles to travel through. Most proposals that help address this problem require the explicit participation of drivers, a permanent internet connection, or important instrumentation in vehicles or roads. These constraints limit the suitability of these proposals when applied into developing regions, like in Latin America. This paper proposes an alternative method, based on unattended crowdsensing, to determine the quality of dirt roads in rural areas. This method involves the use of a mobile application that complements the road condition surveys carried out by organizations in charge of the road network maintenance, giving them early warnings about road areas that could be requiring maintenance. Drivers can also take advantage of the early warnings while they move through these roads. The method was evaluated using information from a public dataset. Although they are preliminary, the results indicate the proposal is potentially suitable to provide awareness about dirt roads condition to drivers, transportation authority and road maintenance companies.

Keywords: dirt roads automatic quality assessment, collaborative system, unattended crowdsensing method, roads quality awareness provision

Procedia PDF Downloads 184
656 Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future.

Keywords: local acceptance, renewable energy facility, spent nuclear fuel repository, interview

Procedia PDF Downloads 286
655 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 79
654 Effects of Using Alternative Energy Sources and Technologies to Reduce Energy Consumption and Expenditure of a Single Detached House

Authors: Gul Nihal Gugul, Merih Aydinalp-Koksal

Abstract:

In this study, hourly energy consumption model of a single detached house in Ankara, Turkey is developed using ESP-r building energy simulation software. Natural gas is used for space heating, cooking, and domestic water heating in this two story 4500 square feet four-bedroom home. Hourly electricity consumption of the home is monitored by an automated meter reading system, and daily natural gas consumption is recorded by the owners during 2013. Climate data of the region and building envelope data are used to develop the model. The heating energy consumption of the house that is estimated by the ESP-r model is then compared with the actual heating demand to determine the performance of the model. Scenarios are applied to the model to determine the amount of reduction in the total energy consumption of the house. The scenarios are using photovoltaic panels to generate electricity, ground source heat pumps for space heating and solar panels for domestic hot water generation. Alternative scenarios such as improving wall and roof insulations and window glazing are also applied. These scenarios are evaluated based on annual energy, associated CO2 emissions, and fuel expenditure savings. The pay-back periods for each scenario are also calculated to determine best alternative energy source or technology option for this home to reduce annual energy use and CO2 emission.

Keywords: ESP-r, building energy simulation, residential energy saving, CO2 reduction

Procedia PDF Downloads 179
653 Analysys of Some Solutions to Protect the Tombolo of Giens

Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet

Abstract:

The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydro-sedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.

Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model

Procedia PDF Downloads 303
652 A Simple, Precise and Cost Effective PTFE Container Design Capable to Work in Domestic Microwave Oven

Authors: Mehrdad Gholami, Shima Behkami, Sharifuddin B. Md. Zain, Firdaus A. B. Kamaruddin

Abstract:

Starting from the first application of a microwave oven for sample preparation in 1975 for the purpose of wet ashing of biological samples using a domestic microwave oven, many microwave-assisted dissolution vessels have been developed. The advanced vessels are armed with special safety valve that release the excess of pressure while the vessels are in critical conditions due to applying high power of microwave. Nevertheless, this releasing of pressure may cause lose of volatile elements. In this study Teflon bottles are designed with relatively thicker wall compared to commercial ones and a silicone based polymer was used to prepare an O-ring which plays the role of safety valve. In this design, eight vessels are located in an ABS holder to keep them stable and safe. The advantage of these vessels is that they need only 2 mL of HNO3 and 1mL H2O2 to digest different environmental samples, namely, sludge, apple leave, peach leave, spinach leave and tomato leave. In order to investigate the performance of this design an ICP-MS instrument was applied for multi elemental analysis of 20 elements on the SRM of above environmental samples both using this design and a commercial microwave digestion design. Very comparable recoveries were obtained from this simple design with the commercial one. Considering the price of ultrapure chemicals and the amount of them which normally is about 8-10 mL, these simple vessels with the procedures that will be discussed in detail are very cost effective and very suitable for environmental studies.

Keywords: inductively coupled plasma mass spectroscopy (ICP-MS), PTFE vessels, Teflon bombs, microwave digestion, trace element

Procedia PDF Downloads 320
651 Shear Stress and Effective Structural Stress ‎Fields of an Atherosclerotic Coronary Artery

Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis

Abstract:

A three-dimensional numerical model of an atherosclerotic coronary ‎artery is developed for the determination of high-risk situation and ‎hence heart attack prediction. Employing the finite element method ‎‎(FEM) using ANSYS, fluid-structure interaction (FSI) model of the ‎artery is constructed to determine the shear stress distribution as well ‎as the von Mises stress field. A flexible model for an atherosclerotic ‎coronary artery conveying pulsatile blood is developed incorporating ‎three-dimensionality, artery’s tapered shape via a linear function for ‎artery wall distribution, motion of the artery, blood viscosity via the ‎non-Newtonian flow theory, blood pulsation via use of one-period ‎heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity ‎via the Prony series shear relaxation scheme, and micro-calcification ‎inside the plaque. The material properties used to relate the stress field ‎to the strain field have been extracted from clinical data from previous ‎in-vitro studies. The determined stress fields has potential to be used as ‎a predictive tool for plaque rupture and dissection.‎ The results show that stress concentration due to micro-calcification ‎increases the von Mises stress significantly; chance of developing a ‎crack inside the plaque increases. Moreover, the blood pulsation varies ‎the stress distribution substantially for some cases.‎

Keywords: atherosclerosis, fluid-structure interaction‎, coronary arteries‎, pulsatile flow

Procedia PDF Downloads 154
650 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries

Authors: Moustafa M. S. Sanad

Abstract:

The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.

Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries

Procedia PDF Downloads 27
649 Study of Acoustic Resonance of Model Liquid Rocket Combustion Chamber and Its Suppression

Authors: Vimal O. Kumar, C. K. Muthukumaran, P. Rakesh

Abstract:

Liquid rocket engine (LRE) combustion chamber is subjected to pressure oscillation during the combustion process. The combustion noise (acoustic noise) is a broad band, small amplitude, high frequency component pressure oscillation. They constitute only a minor fraction ( < 1%) of the entire combustion process. However, this high frequency oscillation is huge concern during the design phase of LRE combustion chamber as it would cause catastrophic failure of the chamber. Depends on the chamber geometry, certain frequencies form standing wave pattern, and they resonate with high amplitude and are known as Eigen modes. These Eigen modes could cause failures unless it is suppressed to be within safe limits. These modes are categorized into radial, tangential, and azimuthal modes, and their structure inside the combustion chamber is of interest to the researchers. In the present proposal, experimental as well as numerical simulation will be performed to obtain the frequency-amplitude characteristics of the model combustion chamber for different baffle configuration. The main objective of this study is to find effect of baffle configuration that would provide better suppression of acoustic modes. The experimental study aims at measuring the frequency amplitude characteristics at certain points in the chamber wall. The experimental measurement will be also used for scheme used in numerical simulation. In addition to experiments, numerical simulation would provide detailed structure of the Eigenmodes exhibited and their level of suppression with the aid of different baffle configurations.

Keywords: baffle, instability, liquid rocket engine, pressure response of chamber

Procedia PDF Downloads 108
648 The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters

Authors: Jiraphorn Satechan, Thanaphon Khamthieng, Warunee Phanwong

Abstract:

This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move.

Keywords: Cleaning Equipment, Bus Air Filters, Preventing Dust Diffusion, Innovation

Procedia PDF Downloads 92
647 A Preliminary Study of the Effects of Abiotic Environmental Variables on Early Diptera Carrion Colonizers in Algiers, Algeria

Authors: M. Taleb, G. Tail, F. Z. Kara, B. Djedouani T. Moussa

Abstract:

Necrophagous insects usually colonize cadavers within a short time after death. However, they are influenced by weather conditions, and their distribution and activity vary according to different time scales, which can affect the post-mortem interval (PMI) estimation. As no data have been published in Algeria on necrophagous insects visiting corpses, two field surveys were conducted in July 2012 and March 2013 at the National Institute for Criminalistics and Criminology (INCC) using rabbit carcasses (Oryctolagus cuniculus L.). The trials were designed to identify the necrophagous Diptera fauna of Algiers, Algeria and examine their variations according to environmental variables. Four hundred and eighteen Diptera adults belonging to five families were captured during this study. The species which were identified on human corpses in different regions of Algeria were also observed on the rabbit carcasses. Although seasonal variations of the species were observed, their abundance did not significantly vary between the two seasons. In addition to seasonal effects, the ambient temperature, the wind speed, and precipitation affect the number of trapped flies. These conclusions highlight the necessity of considering the environmental factors at a scene to estimate the post-mortem interval accurately. It is hoped that these findings provide basic information regarding the necrophagous Diptera fauna of Algeria.

Keywords: forensic entomology, necrophagous diptera, post-mortem interval, abiotic factors, Algeria

Procedia PDF Downloads 371
646 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 165
645 Production of Pour Point Depressant for Paraffinic Crude Oils

Authors: Mosaad Attia Elkasaby

Abstract:

The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration.

Keywords: PPD, aniline, paraffinic crude oils, polymers

Procedia PDF Downloads 78