Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9501

Search results for: machine resistance training

7791 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids

Authors: Sami M. Alshareef

Abstract:

The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.

Keywords: machine learning, cyber-attacks, automatic generation control, smart grid

Procedia PDF Downloads 84
7790 Film, Globalization, Resistance: Emirati Film Production as a Medium of Localization

Authors: Chrysavgi Papagianni

Abstract:

The tension between global and local has been a usual topic in discussions regarding globalization. Instead of reproducing the usual ‘gloom and doom’ arguments surrounding many of these discussions, the present paper will focus on Emirati film production and more particularly on the work of the acclaimed director Nojoom Alghanem, in order to highlight how local culture can, in fact, become a force of resistance, or else a medium of localization. As a matter of fact, Alghanem’s films, especially Sounds of the Sea, Hamama and Nearby Sky are apt examples of a localizing force in action as they tap into the audience’s dormant memories of the pre-oil past, in a country that has been swept by unprecedented development and globalization in the last 60 years. What becomes evident is that the remediation of memories in Alghanem’s films makes them more ‘mobile’ and thus allows them to circulate better in today’s network society.

Keywords: culture, film, globalization, identity

Procedia PDF Downloads 289
7789 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection

Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary

Abstract:

We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.

Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning

Procedia PDF Downloads 236
7788 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 35
7787 Induction Motor Analysis Using LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex.In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current.

Keywords: induction motor, LabVIEW software, modelling and analysi, electrical and mechanical characteristics of motor

Procedia PDF Downloads 553
7786 Nuclear Resistance Movements: Case Study of India

Authors: Shivani Yadav

Abstract:

The paper illustrates dynamics of nuclear resistance movements in India and how peoples’ power rises in response to subversion of justice and suppression of human rights. The need for democratizing nuclear policy runs implicit through the demands of the people protesting against nuclear programmes. The paper analyses the rationale behind developing nuclear energy according to the mainstream development model adopted by the state. Whether the prevalent nuclear discourse includes people’s ambitions and addresses local concerns or not is discussed. Primarily, the nuclear movements across India comprise of two types of actors i.e. the local population as well as the urban interlocutors. The first type of actor is the local population comprising of the people who are residing in the vicinity of the nuclear site and are affected by its construction, presence and operation. They have very immediate concerns against nuclear energy projects but also have an ideological stand against producing nuclear energy. The other types of actors are the urban interlocutors, who are the intellectuals and nuclear activists who have a principled stand against nuclear energy and help to aggregate the aims and goals of the movement on various platforms. The paper focuses on the nuclear resistance movements at five sites in India- Koodankulam (Tamil Nadu), Jaitapur (Maharashtra), Haripur (West Bengal), Mithivirdi (Gujrat) and Gorakhpur (Haryana). The origin, development, role of major actors and mass media coverage of all these movements are discussed in depth. Major observations from the Indian case include: first, nuclear policy discussions in India are confined to elite circles; secondly, concepts like national security and national interest are used to suppress dissent against mainstream policies; and thirdly, India’s energy policies focus on economic concerns while ignoring the human implications of such policies. In conclusion, the paper observes that the anti-nuclear movements question not just the feasibility of nuclear power but also its exclusionary nature when it comes to people’s participation in policy making, endangering the ecology, violation of human rights, etc. The character of these protests is non-violent with an aim to produce more inclusive policy debates and democratic dialogues.

Keywords: anti-nuclear movements, Koodankulam nuclear power plant, non-violent resistance, nuclear resistance movements, social movements

Procedia PDF Downloads 146
7785 Nano Composite of Clay and Modified Ketonic Resin as Fire Retardant Polyol for Polyurethane

Authors: D. Önen, N. Kızılcan, B. Yıldız, A. Akar

Abstract:

In situ modified cyclohexanone-formaldehyde resins were prepared by addition of alendronic acid during resin preparation. Clay nanocomposites in ketonic resins were achieved by adding clay into the flask at the beginning of the resin preparation. The prepared resins were used for the synthesis of fire resistant polyurethanes foam. Both phosphorous containing modifier compound alendronic acid and nanoclay increases fire resistance of the cyclohexanone-formaldehyde resin thus polyurethane produced from these resins. The effect of the concentrations of alendronic acid and clay on the fire resistance and physical properties of polyurethanes was studied.

Keywords: alendronic acid, clay, ketonic resin, polyurethane

Procedia PDF Downloads 396
7784 Construction and Cross-Linking of Polyelectrolyte Multilayers Based on Polysaccharides as Antifouling Coatings

Authors: Wenfa Yu, Thuva Gnanasampanthan, John Finlay, Jessica Clarke, Charlotte Anderson, Tony Clare, Axel Rosenhahn

Abstract:

Marine biofouling is a worldwide problem at vast economic and ecological costs. Historically it was combated with toxic coatings such as tributyltin. As those coatings being banned nowadays, finding environmental friendly antifouling solution has become an urgent topic. In this study antifouling coatings consisted of natural occurring polysaccharides hyaluronic acid (HA), alginic acid (AA), chitosan (Ch) and polyelectrolyte polyethylenimine (PEI) are constructed into polyelectrolyte multilayers (PEMs) in a Layer-by-Layer (LbL) method. LbL PEM construction is a straightforward way to assemble biomacromolecular coatings on surfaces. Advantages about PEM include ease of handling, highly diverse PEM composition, precise control over the thickness and so on. PEMs have been widely employed in medical application and there are numerous studies regarding their protein adsorption, elasticity and cell adhesive properties. With the adjustment of coating composition, termination layer charge, coating morphology and cross-linking method, it is possible to prepare low marine biofouling coatings with PEMs. In this study, using spin coating technology, PEM construction was achieved at smooth multilayers with roughness as low as 2nm rms and highly reproducible thickness around 50nm. To obtain stability in sea water, the multilayers were covalently cross-linked either thermally or chemically. The cross-linking method affected surface energy, which was reflected in water contact angle, thermal cross-linking led to hydrophobic surfaces and chemical cross-linking generated hydrophilic surfaces. The coatings were then evaluated regarding its protein resistance and biological species resistance. While the hydrophobic thermally cross-linked PEM had low resistance towards proteins, the resistance of chemically cross-linked PEM strongly depended on the PEM termination layer and the charge of the protein, opposite charge caused high adsorption and same charge low adsorption, indicating electrostatic interaction plays a crucial role in the protein adsorption processes. Ulva linza was chosen as the biological species for antifouling performance evaluation. Despite of the poor resistance towards protein adsorption, thermally cross-linked PEM showed good resistance against Ulva spores settlement, the chemically cross-linked multilayers showed poor resistance regardless of the termination layer. Marine species adhesion is a complex process, although it involves proteins as bioadhesives, protein resistance its own is not a fully indicator for its antifouling performance. The species will pre select the surface, responding to cues like surface energy, chemistry, or charge and so on. Thus making it difficult for one single factors to determine its antifouling performance. Preparing PEM coating is a comprehensive work involving choosing polyelectrolyte combination, determining termination layer and the method for cross-linking. These decisions will affect PEM properties such as surface energy, charge, which is crucial, since biofouling is a process responding to surface properties in a highly sensitive and dynamic way.

Keywords: hyaluronic acid, polyelectrolyte multilayers, protein resistance, Ulva linza zoospores

Procedia PDF Downloads 163
7783 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 338
7782 Variation in Carboxylesterase Activity in Spodoptera litura Fabricious (Noctuidae: Lepidoptera) Populations from India

Authors: V. Karuppaiah, J. C. Padaria, C. Srivastava

Abstract:

The tobacco caterpillar, Spodoptera litura Fab (Lepidoptera: Noctuidae) is a polyphagous pest various field and horticulture crops in India. Pest had virtually developed resistance to all commonly used insecticides. Enhanced detoxification is the prime mechanism that is dictated by detoxification different enzymes and carboxylesterase is one of the major enzyme responsible development of resistance. In India, insecticide resistance studies on S. litura are mainly deployed on detoxification enzymes activity and investigation at gene level alteration i.e. at nucleotide level is very merger. In the present study, we collected the S. litura larvae from three different cauliflower growing belt viz., IARI, New Delhi (Delhi), Palari, Sonepat (Haryana) and Varanasi (Uttar Pradesh) to study the role of carboxylesterase activity and its gene level variation The CarE activity was measured using UV-VIS spectrophotometer with 3rd instar larvae of S. litura. The elevated activity of CarE was observed in Sonepat strain (28.09 ± 0.09 µmol/min/mg of protein) followed by Delhi (26.72 ± 0.04 µmol/min/mg of protein) and Varanasi strain (10.00 ± 0.44 µmol/min/mg of protein) of S. litura. The genomic DNA was isolated from 3rd instar larvae and CarE gene was amplified using a primer sequence, F:5’tccagagttccttgtcaggcac3’; R:5’ctgcatcaagcatgtctc3. CarE gene, about 500bp was partially amplified, sequenced and submitted to NCBI (Accession No. KF835886, KF835887 and KF835888). The sequence data revealed polymorphism at nucleotide level in all the three strains and gene found to have 88 to 97% similarity with previous available nucleotide sequences of S. litura, S. littoralis and S. exiqua. The polymorphism at the nucleotide level could be a reason for differential activity of carboxylesterase enzymes among the strains. However, investigation at gene expression level would be useful to analyze the overproduction of carboxylesterase enzyme.

Keywords: carboxylesterase, CarE gene, nucleotide polymorphism, insecticide resistance, spodoptera litura

Procedia PDF Downloads 921
7781 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide

Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović

Abstract:

Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.

Keywords: ANN regression, GC/MS, Satureja montana, terpenes

Procedia PDF Downloads 451
7780 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 222
7779 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices

Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner

Abstract:

Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.

Keywords: biometrics, electrocardiographic, machine learning, signals processing

Procedia PDF Downloads 140
7778 Analysis of Heat Transfer and Energy Saving Characteristics for Bobsleigh/Skeleton Ice Track

Authors: Zichu Liu, Zhenhua Quan, Xin Liu, Yaohua Zhao

Abstract:

Enhancing the heat transfer characteristics of the bobsleigh/skeleton ice track and reducing the energy consumption of the bobsleigh/skeleton ice track plays an important role in energy saving of the refrigeration systems. In this study, a track ice-making test rig was constructed to verify the accuracy of the established ice track heat transfer model. The different meteorological conditions on the variations in the heat transfer characteristics of the ice surface, ice temperature, and evaporation temperature with or without Terrain Weather Protection System (TWPS) were investigated, and the influence of the TWPS with and without low emissivity materials on these indexes was also compared. In addition, the influence of different pipe spacing and diameters of refrigeration pipe on the heat transfer resistance of the track is also analyzed. The results showed that compared with the ice track without sunshade facilities, TWPS could reduce the heat transfer between ice surface and air by 17.6% in the transition season, and TWPS with low emissivity material could reduce the heat transfer by 37%. The thermal resistance of the ice track decreased by 8.9×10⁻⁴ m²·°C/W, and the refrigerant evaporation temperature increased by 0.25 °C when the cooling pipes spacing decreased by every 10 mm. The thermal resistance decreased by 1.46×10⁻³ m²·°C/W, and the refrigerant evaporation temperature increased by 0.3 °C when the pipe diameter increased by one nominal diameter.

Keywords: bobsleigh/skeleton ice track, calculation model, heat transfer characteristics, refrigeration

Procedia PDF Downloads 108
7777 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 436
7776 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 51
7775 Teacher Education and Curriculum Innovation in Nigeria: Issues and Perspectives

Authors: Kenneth Uzochukwu Ezugwu

Abstract:

The quest for adequate teacher education is a serious task for the educational system in Nigeria because teachers are the major translators of education programmes in the classroom. The production of well trained teachers will enhance quality of the products of the school system. It is in this respect that the national policy on education posited that no educational system can rise above the quality of teachers. It is in the light of the above that this paper discusses and brought to the fore certain issues as the re-introduction of teacher training colleges, competitive entry requirement into teacher education and continuous on-the-job training as areas of needed innovation.

Keywords: curriculum innovation, issues, perspectives, teacher education

Procedia PDF Downloads 598
7774 Enhancing the Oxidation Resistance of Copper at High Temperature by Surface Fluorination

Authors: Jae-Ho Kim, Ryosuke Yokochi, Miho Fuzihashi, Susumu Yonezawa

Abstract:

The use of silver nanoparticles in conductive inks and their printing by injecting technology has been known for years. However, the very high cost of silver limits wide industrial applications. Since copper is much cheaper but possesses a very high conductivity (only 6% less than that of Ag), Cu nanoparticles can be considered as a replacement for silver nanoparticles. However, a major problem in utilizing their copper nanoparticles is their inherent tendency to oxidize in ambient conditions. In conductive printing applications, the presence of copper oxide on the surface of nanoparticles has two negative consequences: it increases the required sintering temperature and reduces the electrical conductivity. Only a limited number of reports have attempted to address the oxidation problem, which in general is based on minimizing the exposure of the copper nanoparticles to oxygen by a protective layer composed of a second material at the surface of the particles. To form the protective layer on the surface, carbon-based materials, surfactants, metals, and so on. In this study, we tried to modify the oxide on Cu particles using fluorine gas. And the creation effects of oxyfluorides or fluorides on the oxidation resistance of Cu particles were investigated. Compared with untreated sample (a), the fluorinated samples can restrain the weight increase even at 200℃ from the TG-DTA results. It might be considered that the substantial oxyfluorides on the surface play a role in protecting metal oxidation.

Keywords: copper metal, electrical conductivity, oxidation resistance, surface fluorination

Procedia PDF Downloads 108
7773 Design of Semi-Autonomous Street Cleaning Vehicle

Authors: Khouloud Safa Azoud, Süleyman Baştürk

Abstract:

In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.

Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems

Procedia PDF Downloads 31
7772 Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading

Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams

Abstract:

Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP.

Keywords: damaged, concrete, impact, repaired

Procedia PDF Downloads 342
7771 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 63
7770 An Application of a Feedback Control System to Minimize Unforeseen Disruption in a Paper Manufacturing Industry in South Africa

Authors: Martha E. Ndeley

Abstract:

Operation management is the key element within the manufacturing process. However, during this process, there are a number of unforeseen disruptions that causes the process to a standstill which are, machine breakdown, employees absenteeism, improper scheduling. When this happens, it forces the shop flow to a rescheduling process and these strategy reschedules only a limited part of the initial schedule to match up with the pre-schedule at some point with the objective to create a new schedule that is reliable which in the long run gets disrupted. In this work, we have developed feedback control system that minimizes any form of disruption before the impact becomes severe, the model was tested in a paper manufacturing industries and the results revealed that, if the disruption is minimized at the initial state, the impact becomes unnoticeable.

Keywords: disruption, machine, absenteeism, scheduling

Procedia PDF Downloads 304
7769 Significance of Square Non-Spiral Microcoils for Biomedical Applications

Authors: Himanshu Chandrakar, Krishnapriya S., Rama Komaragiri, Suja K. J.

Abstract:

Micro coils are significant components for micro magnetic sensors and actuators especially in biomedical devices. Non-spiral planar microcoils of square, hexagonal and octagonal shapes are introduced for the first time in this paper. Comparison between different planar spiral and non-spiral coils are also discussed. The fabrication advantages and low power dissipation of non-spiral structures make them a strong alternative for conventional spiral planar coils. Series resistance of non-spiral coil is lesser than that of spiral coils though magnetic field is slightly lesser for non-spiral coils. Comparison of different planar microcoils shows that the proposed square non-spiral coil gives better performance than other structures.

Keywords: non-spiral planar microcoil, power dissipation, series resistance, spiral

Procedia PDF Downloads 165
7768 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 191
7767 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 356
7766 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 36
7765 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine

Authors: Allouache Nadia

Abstract:

Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.

Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine

Procedia PDF Downloads 252
7764 Machine Learning Based Smart Beehive Monitoring System Without Internet

Authors: Esra Ece Var

Abstract:

Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.

Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture

Procedia PDF Downloads 238
7763 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 351
7762 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.

Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis

Abstract:

Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.

Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8

Procedia PDF Downloads 111