Search results for: hydraulic channel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1870

Search results for: hydraulic channel

160 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer

Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang

Abstract:

Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.

Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network

Procedia PDF Downloads 300
159 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation

Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia

Abstract:

Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.

Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation

Procedia PDF Downloads 113
158 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle

Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh

Abstract:

India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.

Keywords: drinking water resources, Ganga alluvial plain, india, mercury

Procedia PDF Downloads 121
157 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 207
156 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 57
155 Re-Evaluating the Hegemony of English Language in West Africa: A Meta-Analysis Review of the Research, 2003-2018

Authors: Oris Tom-Lawyer, Michael Thomas

Abstract:

This paper seeks to analyse the hegemony of the English language in Western Africa through the lens of educational policies and the socio-economic functions of the language. It is based on the premise that there is a positive link between the English language and development contexts. The study aims to fill a gap in the research literature by examining the usefulness of hegemony as a concept to explain the role of English language in the region, thus countering the negative connotations that often accompany it. The study identified four main research questions: i. What are the socio-economic functions of English in Francophone/lusophone countries? ii. What factors promote the hegemony of English in anglophone countries? iii. To what extent is the hegemony of English in West Africa? iv. What are the implications of the non-hegemony of English in Western Africa? Based on a meta-analysis of the research literature between 2003 and 2018, the findings of the study revealed that in francophone/lusophone countries, English functions in the following socio-economic domains; they are peace keeping missions, regional organisations, commercial and industrial sectors, as an unofficial international language and as a foreign language. The factors that promote linguistic hegemony of English in anglophone countries are English as an official language, a medium of instruction, lingua franca, cultural language, language of politics, language of commerce, channel of development and English for media and entertainment. In addition, the extent of the hegemony of English in West Africa can be viewed from the factors that contribute to the non-hegemony of English in the region; they are French language, Portuguese language, the French culture, neo-colonialism, level of poverty, and economic ties of French to its former colonies. Finally, the implications of the non-hegemony of English language in West Africa are industrial backwardness, poverty rate, lack of social mobility, drop out of school rate, growing interest in English, access to limited internet information and lack of extensive career opportunities. The paper concludes that the hegemony of English has resulted in the development of anglophone countries in Western Africa, while in the francophone/lusophone regions of the continent, industrial backwardness and low literacy rates have been consequences of English language marginalisation. In conclusion, the paper makes several recommendations, including the need for the early introduction of English into French curricula as part of a potential solution.

Keywords: developmental tool, English language, linguistic hegemony, West Africa

Procedia PDF Downloads 119
154 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 304
153 The Impact of Demographic Profile on Strategic HRM Practices and its Challenges Faced by HR Managers in IT Firm, India: An Empirical Study

Authors: P. Saravanan, A. Vasumathi

Abstract:

Strategic Human Resource Management (SHRM) plays a vital role in formulating the policies and strategies for the company, in order to fulfill the employee’s requirement and to perform the job efficiently within the organisation. Human Resource Management (HRM) functions helps in attracting and motivating the talented workforce for the organisation and by increasing the performance of an individual, will result in achieving the defined goals and objectives for the company. HRM function plays an important role in managing the workers within organisation through a formal communication channel. Since HR functions acts as a mediatory role in between the employee as well as the employers within the organisation that helps in improving the efficacy and skills of the individuals employed within the company. HR manager acts as a change agent, enabling and driving the change management program with respect to business HR functions and its future requirements of the company. Due to change in the business environment, the focus of HR manager is shifting from administrative/personal functions in to a strategic business HR function. HR managers plays a strategic role in managing various HR functions such as recruitment and selection, human resource information system, manpower planning, performance management, conflict management, employee engagement, compensation management, policy formation and retention strategies followed within the industry. Major challenges faced by HR managers at work place are managing the level of engagement for the talented resources within the organisation, reducing the conflicts at workplace, mapping the talented resources through succession planning process, building the effective appraisal process and performance management system and mapping the compensation based on the skills and experience possed by the employee within the company. The authors conducted a study for the sample size of 75 HR managers from an Indian IT company through systematic sampling method. This study identifies that the female employees are facing lesser conflict than the male employees against their managers within the organisation and also the study determines the impact of demographic profile on strategic HRM practices and its challenges faced by HR managers in IT firm, India.

Keywords: strategic human resource management, change agent, employee engagement, performance management, succession planning and conflict management

Procedia PDF Downloads 274
152 Antihypertensive Effect of Formulated Apium graveolens: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Authors: Maryam Shayani Rad, Seyed Ahmad Mohajeri, Mohsen Mouhebati, Seyed Danial Mousavi

Abstract:

High blood pressure is one of the most important and serious health-threatening because of no symptoms in most people, which can lead to sudden heart attack, heart failure, and stroke. Nowadays, herbal medicine is one of the best and safest strategies for treatment that have no adverse effects. Apium graveolens (celery) can be used as an alternative treatment for many health conditions such as hypertension. Natural compounds reduce blood pressure via different mechanisms in which Apium graveolens extract provides potent calcium channel blocking properties. A randomized, double-blind, placebo-controlled, cross-over clinical trial was done to evaluate the efficacy of formulated Apium graveolens extract with a maximum yield of 3-n-butylphthalide to reduce systolic and diastolic blood pressure in patients with hypertension. 54 hypertensive patients in the range of 20-68 years old were randomly assigned to the treatment group (26 cases) and the placebo control group (26 cases) and were crossed over after washout duration. The treatment group received at least 2 grams of formulated powder in hard capsules orally, before each meal, 2 times daily. The control group received 2 grams of placebo in hard capsules orally, exactly as the same as shape, time, and doses of treatment group. Treatment was administrated in 12 weeks with 4 weeks washout period at the middle of the study, meaning 4 weeks drug consumption for the treatment group, 4 weeks washout and 4 weeks placebo consumption, and vice versa for the placebo control group. The clinical assessment was done 4 times, including at the beginning and ending of the drug and placebo consumption period by 24-hour ambulatory blood pressure monitoring (ABPM) holter, which measured blood pressure every 15 minutes continuously. There was a statistically significant decrease in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the end of drug duration compared to baseline. The changes after 4 weeks on average was about 12.34 mm Hg for the SBP (P < 0.005) and 7.83 mm Hg for the DBP (P < 0.005). The results from this clinical trial study showed this Apium graveolens extract formulation in the mentioned dosage had a significant effect on blood pressure-lowering for hypertensive patients.

Keywords: Apium graveolens extract, clinical trial, cross-over, hypertension

Procedia PDF Downloads 185
151 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 39
150 The People's Tribunal: Empowerment by Survivors for Survivors of Child Abuse

Authors: Alan Collins

Abstract:

This study explains how The People’s Tribunal empowered survivors of child abuse. It examines how People’s tribunals can be effective mean of empowerment; the challenges of empowerment – expectation v. reality; the findings and how they reflect other inquiry findings; and the importance of listening and learning from survivors. UKCSAPT “The People’s Tribunal” was established by survivors of child sex abuse and members of civil society to investigate historic cases of institutional sex abuse. The independent inquiry, led by a panel of four judges, listened to evidence spanning four decades from survivors and experts. A common theme throughout these accounts showed that a series of institutional failures prevented abuse from being reported; and that there are clear links between children being rendered vulnerable by these failures and predatory abuse on an organised scale. It made a series of recommendations including the establishment of a permanent and open forum for victims to share experiences and give evidence, better links between mental health services and police investigations, and training for police and judiciary professionals on the effects of undisclosed sexual abuse. The main findings of the UKCSAPT report were:-There are clear links between children rendered vulnerable by institutional failures and predatory abuse on an organised scale, even if these links often remain obscure. -UK governmental institutions have failed to provide survivors with meaningful opportunities for either healing or justice. -The vital mental health needs of survivors are not being met and this undermines both their psychological recovery and access to justice. -Police and other authorities often lack the training to understand the complex reasons for the inability of survivors to immediately disclose a history of abuse. -Without far-reaching changes in institutional culture and practices, the sexual abuse of children will continue to be a significant scourge in the UK. The report also outlined a series of recommendations for improving reporting and mental health provision, and access to justice for victims were made, including: -A permanent, government-funded popular tribunal should be established to enable survivors to come forward and tell their stories. -Survivors giving evidence should be assigned an advocate to assist their access to justice. -Mental health services should be linked to police investigations to help victims disclose abuse. -Victims who fear reprisals should be provided with a channel though which to give evidence anonymously.

Keywords: empowerment, survivors, sexual, abuse

Procedia PDF Downloads 230
149 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept

Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani

Abstract:

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy

Procedia PDF Downloads 314
148 Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal

Authors: C. Bateira, J. Fernandes, A. Costa

Abstract:

The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06.

Keywords: agricultural terraces, cartography, landslides, SHALSTAB, vineyards

Procedia PDF Downloads 154
147 Demarcating Wetting States in Pressure-Driven Flows by Poiseuille Number

Authors: Anvesh Gaddam, Amit Agrawal, Suhas Joshi, Mark Thompson

Abstract:

An increase in surface area to volume ratio with a decrease in characteristic length scale, leads to a rapid increase in pressure drop across the microchannel. Texturing the microchannel surfaces reduce the effective surface area, thereby decreasing the pressured drop. Surface texturing introduces two wetting states: a metastable Cassie-Baxter state and stable Wenzel state. Predicting wetting transition in textured microchannels is essential for identifying optimal parameters leading to maximum drag reduction. Optical methods allow visualization only in confined areas, therefore, obtaining whole-field information on wetting transition is challenging. In this work, we propose a non-invasive method to capture wetting transitions in textured microchannels under flow conditions. To this end, we tracked the behavior of the Poiseuille number Po = f.Re, (with f the friction factor and Re the Reynolds number), for a range of flow rates (5 < Re < 50), and different wetting states were qualitatively demarcated by observing the inflection points in the f.Re curve. Microchannels with both longitudinal and transverse ribs with a fixed gas fraction (δ, a ratio of shear-free area to total area) and at a different confinement ratios (ε, a ratio of rib height to channel height) were fabricated. The measured pressure drop values for all the flow rates across the textured microchannels were converted into Poiseuille number. Transient behavior of the pressure drop across the textured microchannels revealed the collapse of liquid-gas interface into the gas cavities. Three wetting states were observed at ε = 0.65 for both longitudinal and transverse ribs, whereas, an early transition occurred at Re ~ 35 for longitudinal ribs at ε = 0.5, due to spontaneous flooding of the gas cavities as the liquid-gas interface ruptured at the inlet. In addition, the pressure drop in the Wenzel state was found to be less than the Cassie-Baxter state. Three-dimensional numerical simulations confirmed the initiation of the completely wetted Wenzel state in the textured microchannels. Furthermore, laser confocal microscopy was employed to identify the location of the liquid-gas interface in the Cassie-Baxter state. In conclusion, the present method can overcome the limitations posed by existing techniques, to conveniently capture wetting transition in textured microchannels.

Keywords: drag reduction, Poiseuille number, textured surfaces, wetting transition

Procedia PDF Downloads 140
146 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip

Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar

Abstract:

Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.

Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation

Procedia PDF Downloads 157
145 Using Digital Innovations to Increase Awareness and Intent to Use Depo-Medroxy Progesterone Acetate-Subcutaneous Contraception among Women of Reproductive Age in Nigeria, Uganda, and Malawi

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Introduction: Digital innovations have been useful in supporting a client’s contraceptive user journey from awareness to method initiation. The concept of contraceptive self-care is being promoted globally as a means for achieving universal access to quality contraceptive care; however, information about this approach is limited. An important determinant of the scale of awareness is the message construct, choice of information channel, and an understanding of the socio-epidemiological dynamics within the target audience. Significant gains have been made recently in expanding the awareness base of DMPA-SC -a relatively new entrant into the family planning method mix. The cornerstone of this success is a multichannel promotion campaign themed Discover your Power (DYP). The DYP campaign combines content marketing across select social media platforms, chatbots, Cyber-IPC, Interactive Voice Response (IVR), and radio campaigns. Methodology: During implementation, the project monitored predefined metrics of awareness and intent, such as the number of persons reached with the messages, the number of impressions, and meaningful engagement (link-clicks). Metrics/indicators are extracted through native insight/analytics tools across the various platforms. The project also enlists community mobilizers (CMs) who go door-to-door and engage WRA to advertise DISC’s online presence and support them to engage with IVR, digital companion (chatbot), Facebook page, and DiscoverYourPower website. Results: The result showed that the digital platforms recorded 242 million impressions and reached 82 million users with key DMPA-SC self-injection messaging in the three countries. As many as 3.4 million persons engaged (liked, clicked, shared, or reposted) digital posts -an indication of intention. Conclusion: Digital solutions and innovations are gradually becoming the archetype for the advancement of the self-care agenda. Digital innovations can also be used to increase awareness and normalize contraceptive self-care behavior amongst women of reproductive age if they are made an integral part of reproductive health programming.

Keywords: digital transformation, health systems, DMPA-SC, family planning, self-care

Procedia PDF Downloads 57
144 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow

Authors: Alex Fedoseyev

Abstract:

This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.

Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow

Procedia PDF Downloads 33
143 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper

Authors: A. F. Momin, D. V. Khakhar

Abstract:

Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.

Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers

Procedia PDF Downloads 62
142 Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay

Authors: S. H. Chew, Z. X. Eng, K. E. Chuah, T. Y. Lim, H. M. A. Yim

Abstract:

In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material.

Keywords: cemented clay, containment bund, dewatering, geotextile tube

Procedia PDF Downloads 248
141 Hydrogeological Appraisal of Karacahisar Coal Field (Western Turkey): Impacts of Mining on Groundwater Resources Utilized for Water Supply

Authors: Sukran Acikel, Mehmet Ekmekci, Otgonbayar Namkhai

Abstract:

Lignite coal fields in western Turkey generally occurs in tensional Neogene basins bordered by major faults. Karacahisar coal field in Mugla province of western Turkey is a large Neogene basin filled with alternation of silisic and calcerous layers. The basement of the basin is composed of mainly karstified carbonate rocks of Mesozoic and schists of Paleozoic age. The basement rocks are exposed at highlands surrounding the basin. The basin fill deposits forms shallow, low yield and local aquifers whereas karstic carbonate rock masses forms the major aquifer in the region. The karstic aquifer discharges through a spring zone issuing at intersection of two major faults. Municipal water demand in Bodrum city, a touristic attraction area is almost totally supplied by boreholes tapping the karstic aquifer. A well field has been constructed on the eastern edge of the coal basin, which forms a ridge separating two Neogene basins. A major concern was raised about the plausible impact of mining activities on groundwater system in general and on water supply well field in particular. The hydrogeological studies carried out in the area revealed that the coal seam is located below the groundwater level. Mining operations will be affected by groundwater inflow to the pits, which will require dewatering measures. Dewatering activities in mine sites have two-sided effects: a) lowers the groundwater level at and around the pit for a safe and effective mining operation, b) continuous dewatering causes expansion of cone of depression to reach a spring, stream and/or well being utilized by local people, capturing their water. Plausible effect of mining operations on the flow of the spring zone was another issue of concern. Therefore, a detailed representative hydrogeological conceptual model of the site was developed on the basis of available data and field work. According to the hydrogeological conceptual model, dewatering of Neogene layers will not hydraulically affect the water supply wells, however, the ultimate perimeter of the open pit will expand to intersect the well field. According to the conceptual model, the coal seam is separated from the bottom by a thick impervious clay layer sitting on the carbonate basement. Therefore, the hydrostratigraphy does not allow a hydraulic interaction between the mine pit and the karstic carbonate rock aquifer. However, the structural setting in the basin suggests that deep faults intersecting the basement and the Neogene sequence will most probably carry the deep groundwater up to a level above the bottom of the pit. This will require taking necessary measure to lower the piezometric level of the carbonate rock aquifer along the faults. Dewatering the carbonate rock aquifer will reduce the flow to the spring zone. All findings were put together to recommend a strategy for safe and effective mining operation.

Keywords: conceptual model, dewatering, groundwater, mining operation

Procedia PDF Downloads 372
140 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors

Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn

Abstract:

For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.

Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene

Procedia PDF Downloads 421
139 Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques

Authors: Prudhvinath Reddy Ankireddy, Narasimha Mangadoddy

Abstract:

Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough.

Keywords: spiral concentrator, bi-component particle segregation, computational fluid dynamics, discrete phase model

Procedia PDF Downloads 41
138 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain

Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov

Abstract:

Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.

Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development

Procedia PDF Downloads 99
137 Internal Mercury Exposure Levels Correlated to DNA Methylation of Imprinting Gene H19 in Human Sperm of Reproductive-Aged Man

Authors: Zhaoxu Lu, Yufeng Ma, Linying Gao, Li Wang, Mei Qiang

Abstract:

Mercury (Hg) is a well-recognized environmental pollutant known by its toxicity of development and neurotoxicity, which may result in adverse health outcomes. However, the mechanisms underlying the teratogenic effects of Hg are not well understood. Imprinting genes are emerging regulators for fetal development subject to environmental pollutants impacts. In this study, we examined the association between paternal preconception Hg exposures and the alteration of DNA methylation of imprinting genes in human sperm DNA. A total of 618 men aged from 22 to 59 was recruited from the Reproductive Medicine Clinic of Maternal and Child Care Service Center and the Urologic Surgery Clinic of Shanxi Academy of Medical Sciences during April 2015 and March 2016. Demographic information was collected using questionnaires. Urinary Hg concentrations were measured using a fully-automatic double-channel hydride generation atomic fluorescence spectrometer. And methylation status in the DMRs of imprinting genes H19, Meg3 and Peg3 of sperm DNA were examined by bisulfite pyrosequencing in 243 participants. Spearman’s rank and multivariate regression analysis were used for correlation analysis between sperm DNA methylation status of imprinting genes and urinary Hg levels. The median concentration of Hg for participants overall was 9.09μg/l (IQR: 5.54 - 12.52μg/l; range = 0 - 71.35μg/l); no significant difference was found in median concentrations of Hg among various demographic groups (p > 0.05). The proportion of samples that a beyond intoxication criterion (10μg/l) for urinary Hg was 42.6%. Spearman’s rank correlation analysis indicates a negative correlation between urinary Hg concentrations and average DNA methylation levels in the DMRs of imprinted genes H19 (rs=﹣0.330, p = 0.000). However, there was no such a correlation found in genes of Peg3 and Meg3. Further, we analyzed of correlation between methylation level at each CpG site of H19 and Hg level, the results showed that three out of 7 CpG sites on H19 DMR, namely CpG2 (rs =﹣0.138, p = 0.031), CpG4 (rs =﹣0.369, p = 0.000) and CpG6 (rs=﹣0.228, p = 0.000), demonstrated a significant negative correlation between methylation levels and the levels of urinary Hg. After adjusting age, smoking, drinking, intake of aquatic products and education by multivariate regression analysis, the results have shown a similar correlation. In summary, mercury nonoccupational environmental exposure in reproductive-aged men associated with altered DNA methylation outcomes at DMR of imprinting gene H19 in sperm, implicating the susceptibility of the developing sperm for environmental insults.

Keywords: epigenetics, genomic imprinting gene, DNA methylation, mercury, transgenerational effects, sperm

Procedia PDF Downloads 227
136 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation

Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida

Abstract:

Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.

Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity

Procedia PDF Downloads 466
135 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars

Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic

Abstract:

Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.

Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal

Procedia PDF Downloads 227
134 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 246
133 Familiarity with Flood and Engineering Solutions to Control It

Authors: Hamid Fallah

Abstract:

Undoubtedly, flood is known as a natural disaster, and in practice, flood is considered the most terrible natural disaster in the world both in terms of loss of life and financial losses. From 1988 to 1997, about 390,000 people were killed by natural disasters in the world, 58% of which were related to floods, 26% due to earthquakes, and 16% due to storms and other disasters. The total damages in these 10 years were about 700 billion dollars, which were 33, 29, 28% related to floods, storms and earthquakes, respectively. In this regard, the worrisome point has been the increasing trend of flood deaths and damages in the world in recent decades. The increase in population and assets in flood plains, changes in hydro systems and the destructive effects of human activities have been the main reasons for this increase. During rain and snow, some of the water is absorbed by the soil and plants. A percentage evaporates and the rest flows and is called runoff. Floods occur when the soil and plants cannot absorb the rainfall, and as a result, the natural river channel does not have the capacity to pass the generated runoff. On average, almost 30% of precipitation is converted into runoff, which increases with snow melting. Floods that occur differently create an area called flood plain around the river. River floods are often caused by heavy rains, which in some cases are accompanied by snow melt. A flood that flows in a river without warning or with little warning is called a flash flood. The casualties of these rapid floods that occur in small watersheds are generally more than the casualties of large river floods. Coastal areas are also subject to flooding caused by waves caused by strong storms on the surface of the oceans or waves caused by underground earthquakes. Floods not only cause damage to property and endanger the lives of humans and animals, but also leave other effects. Runoff caused by heavy rains causes soil erosion in the upstream and sedimentation problems in the downstream. The habitats of fish and other animals are often destroyed by floods. The high speed of the current increases the damage. Long-term floods stop traffic and prevent drainage and economic use of land. The supports of bridges, river banks, sewage outlets and other structures are damaged, and there is a disruption in shipping and hydropower generation. The economic losses of floods in the world are estimated at tens of billions of dollars annually.

Keywords: flood, hydrological engineering, gis, dam, small hydropower, suitablity

Procedia PDF Downloads 40
132 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management

Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin

Abstract:

The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.

Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus

Procedia PDF Downloads 91
131 Microplastics in the Seine River Catchment: Results and Lessons from a Pluriannual Research Programme

Authors: Bruno Tassin, Robin Treilles, Cleo Stratmann, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Rachid Dris, Johnny Gasperi

Abstract:

Microplastics (<5mm) in the environment and in hydro systems is one of the major present environmental issues. Over the last five years a research programme was conducted in order to assess the behavior of microplastics in the Seine river catchment, in a Man-Land-Sea continuum approach. Results show that microplastic concentration varies at the seasonal scale, but also at much smaller scales, during flood events and with tides in the estuary for instance. Moreover, microplastic sampling and characterization issues emerged throughout this work. The Seine river is a 750km long river flowing in Northwestern France. It crosses the Paris megacity (12 millions inhabitants) and reaches the English Channel after a 170 km long estuary. This site is a very relevant one to assess the effect of anthropogenic pollution as the mean river flow is low (mean flow around 350m³/s) while the human presence and activities are very intense. Monthly monitoring of the microplastic concentration took place over a 19-month period and showed significant temporal variations at all sampling stations but no significant upstream-downstream increase, indicating a possible major sink to the sediment. At the scale of a major flood event (winter and spring 2018), microplastic concentration shows an evolution similar to the well-known suspended solids concentration, with an increase during the increase of the flow and a decrease during the decrease of the flow. Assessing the position of the concentration peak in relation to the flow peak was unfortunately impossible. In the estuary, concentrations vary with time in connection with tides movements and in the water column in relation to the salinity and the turbidity. Although major gains of knowledge on the microplastic dynamics in the Seine river have been obtained over the last years, major gaps remain to deal mostly with the interaction with the dynamics of the suspended solids, the selling processes in the water column and the resuspension by navigation or shear stress increase. Moreover, the development of efficient chemical characterization techniques during the 5 year period of this pluriannual research programme led to the improvement of the sampling techniques in order to access smaller microplastics (>10µm) as well as larger but rare ones (>500µm).

Keywords: microplastics, Paris megacity, seine river, suspended solids

Procedia PDF Downloads 178