Search results for: geothermal heat pump
1669 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire
Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.
Abstract:
Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection
Procedia PDF Downloads 861668 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design
Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai
Abstract:
This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.Keywords: PDMS, check valve, micropump, piezoelectric
Procedia PDF Downloads 4561667 Accuracy of Peak Demand Estimates for Office Buildings Using Quick Energy Simulation Tool
Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett
Abstract:
The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, U.S. NJDMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.Keywords: building energy modeling, eQUEST, peak demand, smart meters
Procedia PDF Downloads 681666 Wind Energy Status in Turkey
Authors: Mustafa Engin Başoğlu, Bekir Çakir
Abstract:
Since large part of electricity generation is provided by using fossil based resources, energy is an important agenda for countries. Depletion of fossil resources, increasing awareness of climate change and global warming concerns are the major reasons for turning to alternative energy resources. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, wind energy is promising for Turkey whose installed power capacity increases approximately eight times between 2008 - seventh month of 2014. Signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish government has announced 2023 Vision (2023 targets) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). 2023 Energy targets can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Share of nuclear power plants in electricity generation will be 10% of total electricity generation by 2023. Dependence on foreign energy is reduced for sustainability and energy security. As of seventh month of 2014, total installed capacity of wind power plants is 3.42 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. MILRES is an important project aimed to promote the use of renewable sources in electricity generation. A 500 kW wind turbine will be produced in the first phase of project. Then 2.5 MW wind turbine will be manufactured domestically within this projectKeywords: wind energy, wind speed, 2023 vision, MILRES, wind energy potential in TURKEY
Procedia PDF Downloads 5451665 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code
Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev
Abstract:
This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations.Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code
Procedia PDF Downloads 4151664 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution
Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong
Abstract:
The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.Keywords: particulate, air pollution, wireless communication, sensor
Procedia PDF Downloads 3671663 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method
Authors: Pradeepa Teegala, Ramreddy Chetteti
Abstract:
This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method
Procedia PDF Downloads 3461662 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application
Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran
Abstract:
Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.Keywords: electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity
Procedia PDF Downloads 1491661 Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack
Authors: Chen-Yu Chen, Wei-Mon Yan, Chi-Nan Lai, Jian-Hao Su
Abstract:
The proton exchange membrane fuel cell (PEMFC) becomes more important as an alternative energy source recently. Maintaining proper water content in the membrane is one of the key requirements for optimizing the PEMFC performance. The planar membrane humidifier has the advantages of simple structure, low cost, low-pressure drop, light weight, reliable performance and good gas separability. Thus, it is a common external humidifier for PEMFCs. In this work, a planar membrane humidifier for kW-scale PEMFCs is developed successfully. The heat and mass transfer of humidifier is discussed, and its performance is analyzed in term of dew point approach temperature (DPAT), water vapor transfer rate (WVTR) and water recovery ratio (WRR). The DPAT of the humidifier with the counter flow approach reaches about 6°C under inlet dry air of 50°C and 60% RH and inlet humid air of 70°C and 100% RH. The rate of pressure loss of the humidifier is 5.0×10² Pa/min at the torque of 7 N-m, which reaches the standard of commercial planar membrane humidifiers. From the tests, it is found that increasing the air flow rate increases the WVTR. However, the DPAT and the WRR are not improved by increasing the WVTR as the air flow rate is higher than the optimal value. In addition, increasing the inlet temperature or the humidity of dry air decreases the WVTR and the WRR. Nevertheless, the DPAT is improved at elevated inlet temperatures or humidities of dry air. Furthermore, the performance of the humidifier with the counter flow approach is better than that with the parallel flow approach. The DPAT difference between the two flow approaches reaches up to 8 °C.Keywords: heat and mass transfer, humidifier performance, PEM fuel cell, planar membrane humidifier
Procedia PDF Downloads 3071660 Integrated Flavor Sensor Using Microbead Array
Authors: Ziba Omidi, Min-Ki Kim
Abstract:
This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.Keywords: optical sensor, semiconductor manufacturing, smell sensor, taste sensor
Procedia PDF Downloads 4391659 Geochemical Studies of Mud Volcanoes Fluids According to Petroleum Potential of the Lower Kura Depression (Azerbaijan)
Authors: Ayten Bakhtiyar Khasayeva
Abstract:
Lower Kura depression is a part of the South Caspian Basin (SCB), located between the folded regions of the Greater and Lesser Caucasus. The region is characterized by thick sedimentary cover 22 km (SCB up to 30 km), high sedimentation rate, low geothermal gradient (average value corresponds to 2 °C / 100m). There is Quaternary, Pliocene, Miocene and Oligocene deposits take part in geological structure. Miocene and Oligocene deposits are opened by prospecting and exploratory wells in the areas of Kalamaddin and Garabagli. There are 25 mud volcanoes within the territory of the Lower Kura depression, which are the unique source of information about hydrocarbons contenting great depths. During the wells data research, solid erupted products and mud volcano fluids, and according to the geological and thermal characteristics of the region, it was determined that the main phase of the hydrocarbon generation (MK1-AK2) corresponds to a wide range of depths from 10 to 14 km, which corresponds to the Pliocene-Miocene sediments, and to the "oil and gas windows" according to the intended meaning of R0 ≈ 0,65-0,85%. Fluids of mud volcanoes comprise by the following phases - gas, water. Gas phase consists mainly of methane (99%) of heavy hydrocarbons (С2+ hydrocarbons), CO2, N2, inert components He, Ar. The content of the С2+ hydrocarbons in the gases of mud volcanoes associated with oil deposits is increased. Carbon isotopic composition of methane for the Lower Kura depression varies from -40 ‰ to -60 ‰. Water of mud volcanoes are represented by all four genetic types. However the most typical types of water are HCN type. According to the Mg-Li geothermometer formation of mud waters corresponds to the temperature range from 20 °C to 140 °C (PC2). The solid product emissions of mud volcanoes identified 90 minerals and 30 trace elements. As a result geochemical investigation, thermobaric and geological conditions, zone oil and gas generation - the prospect of the Lower Kura depression is projected to depths greater than 10 km.Keywords: geology, geochemistry, mud volcanoes, petroleum potential
Procedia PDF Downloads 3661658 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger
Procedia PDF Downloads 3001657 Effect of Colloid Versus Crystalloid Administration in Cardiopulmonary Bypass Prime Solution on Tissue and Organ Perfusionm
Authors: Mohammad Java Esmaeily
Abstract:
Background: We evaluate the effects of tissue and organ perfusion during and after coronary artery bypass graft surgery with either colloid (Voluven) or crystalloid (Lactated ringers) as a prime solution. Materials and Methods: In this prospective randomized-controlled trial study, 70 patients undergoing on-pump coronary artery bypass graft surgery were randomly assigned to receive either colloid (Voluven) or crystalloid (Lactated ringer's) as a prime solution for initiation of cardiopulmonary bypass machine procedure. Tissue and organ perfusion markers, including lactate, troponin I, liver and renal function tests and electrolytes, were measured sequentially before induction (T1) to the second days after surgery (T5). Results: With the exception of chloride and potassium levels, no significant differences were detected in other measurements, and laboratory results were identical entirely in the two groups. Conclusion: Voluven® (hydroxyethyl starch, HES 130/0.4) has a not significant difference in comparison with crystalloid (Lactated ringer's) as priming solution on the basis of organ and tissue perfusion tests assessment.Keywords: prime, colloid, crystalloid, lactate, troponin, hydroxyethyl starch
Procedia PDF Downloads 891656 Hydroclean Smartbin Solution for Plastic Pollution Crisis
Authors: Anish Bhargava
Abstract:
By 2050, there will be more plastic than fish in our oceans. 51 trillion micro-plastics pollute our waters and contaminate the food on our plates, increasing the risk of tumours and diseases such as cancer. Our product is a solution to the ever-growing problem of plastic pollution. We call it the SmartBin. The SmartBin is a cylindrical device which will float just below the surface of the water, able to move with the aid of 4 water thrusters situated on the sides. As it floats, our SmartBin will suck water into itself and pump it out through the bottom. All waste is collected into a reusable filter including microplastics measuring down to 1.5mm. A speaker emitting sound at a frequency of 9 hertz ensures marine life stays away from the SmartBin. Featured along with our product is a smartphone app which will enable the user to designate an area for the SmartBin to cover on a satellite image. The SmartBin will then return to its start position near the shore, configured through the app. As global pressure to tackle water pollution continues to increase, environmental spending increases too. As our product provides an effective solution to this issue, we can seize the opportunity and scale our company. Our product is unparalleled. It can move at a high speed, covering a wide area rather than being restricted to one position. We target not only oceans and sea-shores, but also rivers, lakes, reservoirs and canals, as they are much easier to access and control.Keywords: water, plastic, pollution, solution, hydroclean, smartbin, cleanup
Procedia PDF Downloads 2061655 Anti-Inflammatory, Analgesic and Antipyretic Activity of Terminalia arjuna Roxb. Extract in Animal Models
Authors: Linda Chularojmontri, Seewaboon Sireeratawong, Suvara Wattanapitayakul
Abstract:
Terminalia arjuna Roxb. (family Combretaceae) is commonly known as ‘Sa maw thet’ in Thai. The fruit is used in traditional medicine as natural mild laxatives, carminative and expectorant. Aim of the study: This research aims to study the anti-inflammatory, analgesic and antipyretic activities of Terminalia arjuna extract by using animal models in comparison to the reference drugs. Materials and Methods: The anti-inflammatory study was conducted by two experimental animal models namely ethyl phenylpropionate (EPP)-induced ear edema and carrageenan-induced paw edema. The study of analgesic activity used two methods of pain induction including acetic acid and heat-induced pain. In addition, the antipyretic activity study was performed by induced hyperthermia with yeast. Results: The results showed that the oral administration of Terminalia arjuna extract possessed acute anti-inflammatory effect in carrageenan-induced paw edema. Terminalia arjuna extract showed the analgesic activity in acetic acid-induced writhing response and heat-induced pain. This indicates its peripheral effect by inhibiting the biosynthesis and/or release of some pain mediators and some mechanism through Central nervous system. Moreover, Terminalia arjuna extract at the dose of 1000 and 1500 mg/kg body weight showed the antipyretic activity, which might be because of the inhibition of prostaglandins. Conclusion: The findings of this study indicated that the Terminalia arjuna extract possesses the anti-inflammatory, analgesic and antipyretic activities in animals.Keywords: analgesic activity, anti-inflammatory activity, antipyretic activity, Terminalia arjuna extract
Procedia PDF Downloads 2641654 Performance Evaluation of a Small Microturbine Cogeneration Functional Model
Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag
Abstract:
The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.Keywords: cogeneration, microturbine, performance, thermodynamic analysis
Procedia PDF Downloads 1691653 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix
Authors: J. Plocek, P. Holec, S. Kubickova, B. Pacakova, I. Matulkova, A. Mantlikova, I. Němec, D. Niznansky, J. Vejpravova
Abstract:
This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nano crystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nano composites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900–1200 °C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nano crystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ~ 4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nano particles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nano crystals were found to be just moderately modified in comparison to the bulk phases.Keywords: sol-gel method, nanocomposites, Rietveld refinement, Raman spectroscopy, Fourier transform infrared spectroscopy, magnetic properties, spinel, chromite
Procedia PDF Downloads 2161652 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis Using Hazard and Operability Technique
Authors: Elysa V. Largo, Lormaine Anne A. Branzuela, Julie Marisol D. Pagalilauan, Neil C. Concibido, Monet Concepcion M. Detras
Abstract:
The energy demand in the country is increasing; thus, nuclear energy is recently mandated to add to the energy mix. The Philippines has the Bataan Nuclear Power Plant (BNPP), which can be a source of nuclear energy; however, it has not been operated since the completion of its construction. Thus, evaluating the safety of BNPP is vital. This study explored the possible deviations that may occur in the operation of a nuclear power plant with a pressurized water reactor, which is similar to BNPP, through a virtual process hazard analysis (PHA) using the hazard and operability (HAZOP) technique. Temperature, pressure, and flow were used as parameters. A total of 86 causes of various deviations were identified, wherein the primary system and line from reactor coolant pump to reactor vessel are the most critical system and node, respectively. A total of 348 scenarios were determined. The critical events are radioactive leaks due to nuclear meltdown and sump overflow that could lead to multiple worker fatalities, one or more public fatalities, and environmental remediation. There were existing safeguards identified; however, further recommendations were provided to have additional and supplemental barriers to reduce the risk.Keywords: PSM, PHA, HAZOP, nuclear power plant
Procedia PDF Downloads 1541651 Impact of Elevated Temperature on Spot Blotch Development in Wheat and Induction of Resistance by Plant Growth Promoting Rhizobacteria
Authors: Jayanwita Sarkar, Usha Chakraborty, Bishwanath Chakraborty
Abstract:
Plants are constantly interacting with various abiotic and biotic stresses. In changing climate scenario plants are continuously modifying physiological processes to adapt to changing environmental conditions which profoundly affect plant-pathogen interactions. Spot blotch in wheat is a fast-rising disease in the warmer plains of South Asia where the rise in minimum average temperature over most of the year already affecting wheat production. Hence, the study was undertaken to explore the role of elevated temperature in spot blotch disease development and modulation of antioxidative responses by plant growth promoting rhizobacteria (PGPR) for biocontrol of spot blotch at high temperature. Elevated temperature significantly increases the susceptibility of wheat plants to spot blotch causing pathogen Bipolaris sorokiniana. Two PGPR Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) isolated from wheat (Triticum aestivum L.) and blady grass (Imperata cylindrical L.) rhizophere respectively, showing in vitro antagonistic activity against Bipolaris sorokiniana were tested for growth promotion and induction of resistance against spot blotch in wheat. GC-MS analysis showed that Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) produced antifungal and antimicrobial compounds in culture. Seed priming with these two bacteria significantly increase growth, modulate antioxidative signaling and induce resistance and eventually reduce disease incidence in wheat plants at optimum as well as elevated temperature which was further confirmed by indirect immunofluorescence assay using polyclonal antibody raised against Bipolaris sorokiniana. Application of the PGPR led to enhancement in activities of plant defense enzymes- phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3 glucanase in infected leaves. Immunolocalization of chitinase and β-1,3 glucanase in PGPR primed and pathogen inoculated leaf tissue was further confirmed by transmission electron microscopy using PAb of chitinase, β-1,3 glucanase and gold labelled conjugates. Activity of ascorbate-glutathione redox cycle related enzymes such as ascorbate peroxidase, superoxide dismutase and glutathione reductase along with antioxidants such as carotenoids, glutathione and ascorbate and osmolytes like proline and glycine betain accumulation were also increased during disease development in PGPR primed plant in comparison to unprimed plants at high temperature. Real-time PCR analysis revealed enhanced expression of defense genes- chalcone synthase and phenyl alanineammonia lyase. Over expression of heat shock proteins like HSP 70, small HSP 26.3 and heat shock factor HsfA3 in PGPR primed plants effectively protect plants against spot blotch infection at elevated temperature as compared with control plants. Our results revealed dynamic biochemical cross talk between elevated temperature and spot blotch disease development and furthermore highlight PGPR mediated array of antioxidative and molecular alterations responsible for induction of resistance against spot blotch disease at elevated temperature which seems to be associated with up-regulation of defense genes, heat shock proteins and heat shock factors, less ROS production, membrane damage, increased expression of redox enzymes and accumulation of osmolytes and antioxidants.Keywords: antioxidative enzymes, defense enzymes, elevated temperature, heat shock proteins, PGPR, Real-Time PCR, spot blotch, wheat
Procedia PDF Downloads 1711650 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling
Procedia PDF Downloads 3411649 Study on the Spatial Vitality of Waterfront Rail Transit Station Area: A Case Study of Main Urban Area in Chongqing
Authors: Lianxue Shi
Abstract:
Urban waterfront rail transit stations exert a dual impact on both the waterfront and the transit station, resulting in a concentration of development elements in the surrounding space. In order to more effectively develop the space around the station, this study focuses on the perspective of the integration of station, city, and people. Taking Chongqing as an example, based on the Arc GIS platform, it explores the vitality of the site from the three dimensions of crowd activity heat, space facilities heat, and spatial accessibility. It conducts a comprehensive evaluation and interpretation of the vitality surrounding the waterfront rail transit station area in Chongqing. The study found that (1) the spatial vitality in the vicinity of waterfront rail transit stations is correlated with the waterfront's functional zoning and the intensity of development. Stations situated in waterfront residential and public spaces are more likely to experience a convergence of people, whereas those located in waterfront industrial areas exhibit lower levels of vitality. (2) Effective transportation accessibility plays a pivotal role in maintaining a steady flow of passengers and facilitating their movement. However, the three-dimensionality of urban space in mountainous regions is a notable challenge, leading to some stations experiencing limited accessibility. This underscores the importance of enhancing the optimization of walking space, particularly the access routes from the station to the waterfront area. (3) The density of spatial facilities around waterfront stations in old urban areas lags behind the population's needs, indicating a need to strengthen the allocation of relevant land and resources in these areas.Keywords: rail transit station, waterfront, influence area, spatial vitality, urban vitality
Procedia PDF Downloads 311648 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass
Authors: Ayman Othman, Tallat Ali
Abstract:
The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength
Procedia PDF Downloads 3101647 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials
Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie
Abstract:
The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT
Procedia PDF Downloads 721646 Influence of Age on Some Testicular and Spermatic Parameters in Kids and Bucks in Local Breed Arbia in Algeria
Authors: Boukhalfa Djemouai, Belkadi Souhila, Safsaf Boubakeur
Abstract:
To increase the profitability of the national herd so that it can meet the needs of the population, Algeria has proceeded to the introduction of new reproductive biotechnologies, including artificial insemination on natural heat, by induction and heat synchronization. This biotechnology uses the male way for the creation and dissemination of genetic progress. The study has focused on 30 goat kids and bucks local breed aged between 03 and 24 months, divided into 03 groups 03-06 months[Grp 1; n=9], 07-10 months [Grp 2; n=13] and 11-24 months [Grp 3; n=8], in order to determine the influence of age on testicular evolution by measurements of testis and scrotum, and the epididymis sperm parameters evaluation. These parameters are influenced by age variations (sperm and spermocytogram). The examined parameters have focused on testicular weight (grams), the scrotal circumference (cm), mass mobility (%), vitality rate (%), sperm concentration (x 109), and percentage of abnormal spermatozoa (%). The ANOVA reveals a significance effect of age on parameters: testis weight, scrotal circumference, sperm concentration, motility varying between high (p < 0.01) to very high significance (p < 0.001), while in viability and abnormalities no significance was observed between all groups. The value of these parameters increased significantly until the age of 02 years, while that of sperm abnormalities has increased in Grp2. The histological study of testicular development shows that the genetic spermatozoa function characterized by cell proliferation, which is more and more intense starting from the age of 05 months and can be considered as an age of puberty in the local breed goat Arbia and increases with animal age.Keywords: kids and bucks, epididymis sperm, testicular measurements, Arbia breed
Procedia PDF Downloads 1321645 Climate Change Impact on Mortality from Cardiovascular Diseases: Case Study of Bucharest, Romania
Authors: Zenaida Chitu, Roxana Bojariu, Liliana Velea, Roxana Burcea
Abstract:
A number of studies show that extreme air temperature affects mortality related to cardiovascular diseases, particularly among elderly people. In Romania, the summer thermal discomfort expressed by Universal Thermal Climate Index (UTCI) is highest in the Southern part of the country, where Bucharest, the largest Romanian urban agglomeration, is also located. The urban characteristics such as high building density and reduced green areas enhance the increase of the air temperature during summer. In Bucharest, as in many other large cities, the effect of heat urban island is present and determines an increase of air temperature compared to surrounding areas. This increase is particularly important during heat wave periods in summer. In this context, the researchers performed a temperature-mortality analysis based on daily deaths related to cardiovascular diseases, recorded between 2010 and 2019 in Bucharest. The temperature-mortality relationship was modeled by applying distributed lag non-linear model (DLNM) that includes a bi-dimensional cross-basis function and flexible natural cubic spline functions with three internal knots in the 10th, 75th and 90th percentiles of the temperature distribution, for modelling both exposure-response and lagged-response dimensions. Firstly, this study applied this analysis for the present climate. Extrapolation of the exposure-response associations beyond the observed data allowed us to estimate future effects on mortality due to temperature changes under climate change scenarios and specific assumptions. We used future projections of air temperature from five numerical experiments with regional climate models included in the EURO-CORDEX initiative under the relatively moderate (RCP 4.5) and pessimistic (RCP 8.5) concentration scenarios. The results of this analysis show for RCP 8.5 an ensemble-averaged increase with 6.1% of heat-attributable mortality fraction in future in comparison with present climate (2090-2100 vs. 2010-219), corresponding to an increase of 640 deaths/year, while mortality fraction due to the cold conditions will be reduced by 2.76%, corresponding to a decrease by 288 deaths/year. When mortality data is stratified according to the age, the ensemble-averaged increase of heat-attributable mortality fraction for elderly people (> 75 years) in the future is even higher (6.5 %). These findings reveal the necessity to carefully plan urban development in Bucharest to face the public health challenges raised by the climate change. Paper Details: This work is financed by the project URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by Ministry of Environment, Romania with co-funding by the European Union (Grant 690462). A part of this work performed by one of the authors has received funding from the European Union’s Horizon 2020 research and innovation programme from the project EXHAUSTION under grant agreement No 820655.Keywords: cardiovascular diseases, climate change, extreme air temperature, mortality
Procedia PDF Downloads 1281644 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation
Authors: Naseer M. A.
Abstract:
Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings
Procedia PDF Downloads 2521643 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding
Procedia PDF Downloads 2971642 Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients with Type 2 Diabetes Evidence That Insulin Resistance is Associated with a Disturbed Antioxidant Defense Mechanism
Authors: Ghibeche Abderrahmane
Abstract:
To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n=7) and age-matched (n=5) and young (n=9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50,P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.Keywords: euglycemic-hyperinsulinemic, HSP72, mRNA, diabete
Procedia PDF Downloads 4401641 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport
Authors: Aamir Shahzad, Mao-Gang He
Abstract:
Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow
Procedia PDF Downloads 2741640 Effect of Inclusion of Moringa oleifera Leaf on Physiological Responses of Broiler Chickens at Finisher Phase during Hot-Dry Season
Authors: Oyegunle Emmanuel Oke, A. O. Onabajo, M. O. Abioja, F. O. Sorungbe, D. E. Oyetunji, J. A. Abiona, A. O. Ladokun, O. M. Onagbesan
Abstract:
An experiment was conducted to determine the effect of different dietary inclusion levels of Moringa oleifera leaf powder (MOLP) on growth and physiological responses of broiler chickens during hot-dry season in Nigeria. Two hundred and forty (240) day-old commercial broiler chicks were randomly allotted to four dietary treatments having four replicates each. Each replicate had 15 birds. The levels of inclusion were 0g (Control group), 4g, 8g and 12g/Kg feed. The experiment lasted for eight weeks. The results of the study revealed that the initial body weight was significantly (P < 0.05) higher in birds fed 12g/kg diet than those fed 0, 4, and 8g MOLP. The birds fed 0, 4 and 8g/kg diet however had similar weights. The final body weight was significantly (P < 0.05) higher in the birds fed 12g MOLP than those fed 0, 4 and 8g MOLP. The final weights were similar in the birds fed 4 and 8g/kg diet but higher (P < 0.05) than those of the birds in the control group. The body weight gain was similar in birds fed 0 and 4g MOLP but significantly higher (P < 0.05) than those of the birds in 12g/kg diet. There were no significant differences (P > 0.05) in the feed intake. The serum albumin of the birds fed 12g MOLP/Kg diet (48.85g/L) was significantly (P < 0.05) higher than the mean value of those fed the control diet 0 and 8g MOLP/Kg diets having 36.05 and 37.10g/L respectively. Birds fed 12g MOLP/Kg feed recorded the lowest level of triglyceride (122.75g/L) which was significantly (P < 0.05) lower than those of the birds fed 0 and 4g/kg diet MOLP. The serum corticosterone decreased with increase in MOLP inclusion levels. The birds fed 12g MOLP had the least value. This study has shown that MOLP may contain potent antioxidants capable of ameliorating the effects of heat stress in broiler chickens with 12g MOLP inclusion.Keywords: physiology, performance, heat stress, anti-oxidant
Procedia PDF Downloads 351