Search results for: artificial law
410 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 76409 Finite Element Modelling for the Development of a Planar Ultrasonic Dental Scaler for Prophylactic and Periodontal Care
Authors: Martin Hofmann, Diego Stutzer, Thomas Niederhauser, Juergen Burger
Abstract:
Dental biofilm is the main etiologic factor for caries, periodontal and peri-implant infections. In addition to the risk of tooth loss, periodontitis is also associated with an increased risk of systemic diseases such as atherosclerotic cardiovascular disease and diabetes. For this reason, dental hygienists use ultrasonic scalers for prophylactic and periodontal care of the teeth. However, the current instruments are limited to their dimensions and operating frequencies. The innovative design of a planar ultrasonic transducer introduces a new type of dental scalers. The flat titanium-based design allows the mass to be significantly reduced compared to a conventional screw-mounted Langevin transducer, resulting in a more efficient and controllable scaler. For the development of the novel device, multi-physics finite element analysis was used to simulate and optimise various design concepts. This process was supported by prototyping and electromechanical characterisation. The feasibility and potential of a planar ultrasonic transducer have already been confirmed by our current prototypes, which achieve higher performance compared to commercial devices. Operating at the desired resonance frequency of 28 kHz with a driving voltage of 40 Vrms results in an in-plane tip oscillation with a displacement amplitude of up to 75 μm by having less than 8 % out-of-plane movement and an energy transformation factor of 1.07 μm/mA. In a further step, we will adapt the design to two additional resonance frequencies (20 and 40 kHz) to obtain information about the most suitable mode of operation. In addition to the already integrated characterization methods, we will evaluate the clinical efficiency of the different devices in an in vitro setup with an artificial biofilm pocket model.Keywords: ultrasonic instrumentation, ultrasonic scaling, piezoelectric transducer, finite element simulation, dental biofilm, dental calculus
Procedia PDF Downloads 123408 Adaptation of Smart City Concept in Africa: Localization, Relevance and Bottleneck
Authors: Adeleye Johnson Adelagunayeja
Abstract:
The concept of making cities, communities, and neighborhoods smart, intelligent, and responsive is relatively new to Africa and its urban renewal agencies. Efforts must be made by relevant agencies to begin a holistic review of the implementation of infrastructural facilities and urban renewal methodologies that will revolve around the appreciation and application of artificial intelligence. The propagation of the ideals and benefits of the smart city concept are key factors that can encourage governments of African nations, the African Union, and other regional organizations in Africa to embrace the ideology. The ability of this smart city concept to curb insecurities – armed robbery, assassination, terrorism, and civil disorder – is one major reason, amongst others, why African governments must speedily embrace this contemporary developmental concept whose time has come! The seamlessness to access information and virtually cross-pollinate ideas with people living in already established smart cities, when combined with the great efficiency that the emergence of smart cities brings with it, are other reasons why Africa must come up with action plans that can enable the existing cities to metamorphose into smart cities. Innovations will be required to enable Africa to develop a smart city concept that will be compatible with the basic patterns of livelihood because the essence of the smart city evolution is to make life better for people to co-exist, to be productive and to enjoy standard infrastructural facilities. This research paper enumerates the multifaceted adaptive factors that have the potentials of making the adoption of smartcity concept in Africa seamless. It also proffers solutions to potential bottlenecks capable of undermining the execution of the smart city concept in Africa.Keywords: smartcity compactibility innovation Africa government evolution, Africa as global village member, evolution in Africa, ways to make Africa adopt smartcity, localizing smartcity concept in Africa, bottleneck to smartcity developmet in Africa
Procedia PDF Downloads 86407 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 150406 Mental Accounting Theory Development Review and Application
Authors: Kang-Hsien Li
Abstract:
Along with global industries in using technology to enhance the application, make the study drawn more close to the people’s behavior and produce data analysis, extended out from the mental accounting of prospect theory, this paper provides the marketing and financial applications in the field of exploration and discussions with the future. For the foreseeable future, the payment behavior depends on the form of currency, which affects a variety of product types on the marketing of marketing strategy to provide diverse payment methods to enhance the overall sales performance. This not only affects people's consumption also affects people's investments. Credit card, PayPal, Apple pay, Bitcoin and any other with advances in technology and other emerging payment instruments, began to affect people for the value and the concept of money. Such as the planning of national social welfare policies, monetary and financial regulators and regulators. The expansion can be expected to discuss marketing and finance-related mental problems at the same time, recent studies reflect two different ideas, the first idea is that individuals affected by situational frames, not broad impact at the event level, affected by the people basically mental, second idea is that when an individual event affects a broader range, and majority of people will choose the same at the time that the rational choice. That are applied to practical application of marketing, at the same time provide an explanation in the financial market under the anomalies, due to the financial markets has varied investment products and different market participants, that also highlights these two points. It would provide in-depth description of humanity's mental. Certainly, about discuss mental accounting aspects, while artificial intelligence application development, although people would be able to reduce prejudice decisions, that will also lead to more discussion on the economic and marketing strategy.Keywords: mental accounting, behavior economics, consumer behaviors, decision-making
Procedia PDF Downloads 452405 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 60404 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075
Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh
Abstract:
Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains
Procedia PDF Downloads 448403 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka
Authors: H. M. N. L. Handagiripathira
Abstract:
The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.Keywords: gamma spectrometry, lagoon, radioactivity, sediments
Procedia PDF Downloads 139402 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud
Authors: Sharda Kumari, Saiman Shetty
Abstract:
Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation
Procedia PDF Downloads 109401 Humans, Social Robots, and Mutual Love: An Application of Aristotle’s Nicomachean Ethics
Authors: Ruby Jean Hornsby
Abstract:
In our rapidly advancing techno-moral world, human-robot relationships are increasingly becoming a part of intimate human life. Indeed, social robots - that is, autonomous or semi-autonomous embodied artificial agents that generally possess human or animal-like qualities (such as responding to environmental stimuli, communicating, learning, performing human tasks, and making autonomous decisions) - have been designed to function as human friends. In light of such advances, immediate philosophical scrutiny is imperative in order to examine the extent to which human-robot interactions constitute genuine friendship and therefore contribute towards the good human life. Aristotle's conception of friendship is philosophically illuminating and sufficiently broad in scope to guide such analysis. On his account, it is necessary (though not sufficient) that for a friendship to exist between two agents - A and B - both agents must have a mutual love for one another. Aristotle claims that A loves B if: Condition 1: A desires those apparent good (qua pleasant, useful, or virtuous) properties attributable to B, and Condition 2: A has goodwill (wishes what is best) for B. This paper argues that human-robot interaction can (and does) successfully meet both conditions; as such, it demonstrates that robots and humans can reciprocally love one another. It will argue for this position by first justifying the claim that a human can desire apparent good features attributable to a robot (i.e., by taking them to be pleasant and/or useful) and outlining how it is that a human can wish a robot well in light of that robot's (quasi-) interests. Next, the paper will argue that a robot can (quasi-)desire certain properties that are attributable to a human before elucidating how it is possible for a robot to act in the interests of a human. Accordingly, this paper will conclude that it is already the case that humans can formulate relationships with robots that involve reciprocated love. This is significant because it suggests that social robots are candidates for human friendship and can therefore contribute toward flourishing human futures.Keywords: ancient philosophy, friendship, inter-disciplinary applied ethics, love, social robotics
Procedia PDF Downloads 101400 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 209399 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing
Authors: Stephanie Liu Lu
Abstract:
With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.Keywords: AI-assistance, business Chinese, textual analysis, language education
Procedia PDF Downloads 58398 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 30397 Information Visualization Methods Applied to Nanostructured Biosensors
Authors: Osvaldo N. Oliveira Jr.
Abstract:
The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique
Procedia PDF Downloads 337396 Investigation of the Factors Influencing the Construction Planning Process Using Participant Observation Method
Authors: Ashokkumar Subbiah
Abstract:
This study investigates the impact of factors that influenced the success of construction planning for a major construction project in Qatar. An approach of participant observation is adopted which is informed by the principles of ethnography: one that reports the participants’ view of their world rather than imposing an artificial theoretical framework upon it. As participant observant, key factors were observed and identified that had an impact on the management and execution of the construction planning. It is found that a ‘shadow culture’ exists between the project participants which, it is argued, is only observable from the perspective of an embedded participant observer. The shadow culture acts to enable the management of the planning process, and its efficacy relates to the ‘quality’ of human inter-relationships amongst immediate stakeholders. Whilst this study uses the concept of shadow culture, it is treated as both a methodological stance and one of the findings of this research in the context of the major construction project in Qatar. The concept of shadow culture is not imposed upon the findings, but instead is used as a research tool: respondents report their own worldview and this is reported from the view of a participant observant in a manner that is understandable and useful to those who are not part of the construction project. The findings of this study identify similar factors influencing the planning process of the Qatar project, but the shadow culture predominantly influences these factors towards the failure of planning process. The research concludes by questioning the assumption that construction planning is a mechanistic process that has to be conducted solely by the planning team. Instead, it is a highly social phenomenon in which the seemingly mechanistic process is made workable by the quality of relationships that exist in the project. Drawing on this the final section provides a series of recommendations that may be helpful in enhancing the efficacy of project planning; these include better training/education at the pre-construction phase; recognition of the importance of shadow processes at management levels, and better appreciation of the impact of contract type and chosen procurement route.Keywords: construction planning, participant observation, project participants, shadow culture
Procedia PDF Downloads 300395 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production
Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas
Abstract:
Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule
Procedia PDF Downloads 176394 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers
Procedia PDF Downloads 178393 Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper
Authors: M. Parvez Alam, M. Bilal Khan
Abstract:
Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance.Keywords: concrete, pozzolonic materials, ceramic waste powder, copper slag
Procedia PDF Downloads 317392 Upcoming Fight Simulation with Smart Shadow
Authors: Ramiz Kuliev, Fuad Kuliev-Smirnov
Abstract:
The 'Shadow Sparring' training exercise is widely used in the training of boxers and martial artists. The main disadvantage of the usual shadow sparring is that the trainer cannot fully control such training and evaluate its results. During the competition, the athlete, preparing for the upcoming fight, imagines the Shadow (upcoming opponent) in accordance with his own imagination. A ‘Smart-Shadow Sparring’ (SSS) is an innovative version of the ‘Shadow Sparring’. During SSS, the fighter will see the Shadow (virtual opponent that moves, defends, and punches) and understand when he misses the punches from the Shadow. The task of a real athlete is to spar with a virtual one, move around, punch in the direction of unprotected areas of the Shadow and dodge his punches. Moves and punches of Shadow are set up before each training. The system will give the coach full information about virtual sparring: (i) how many and what type of punches has the fighter landed, (ii) accuracy of these punches, (iii) how many and what type of virtual punches (punches of Smart-Shadow) has the fighter missed, etc. SSS will be recorded as animated fighting of two fighters and will help the coach to analyze past training. SSS can be configured to fit the physical and technical characteristics of the next real opponent (size, techniques, speed, missed and landed punches, etc.). This will allow to simulate and rehearse the upcoming fight and improve readiness for the next opponent. For amateur fighters, SSS will be reconfigured several times during a tournament, when the real opponent becomes known. SSS can be used in three versions: (1) Digital Shadow: the athlete will see a Shadow on a monitor (2) VR-Shadow: the athlete will see a Shadow in a VR-glasses (3) Smart Shadow: a Shadow will be controlled by artificial intelligence. These technologies are based on the ‘semi-real simulation’ method. The technology allows coaches to train athletes remotely. Simulation of different opponents will help the athletes better prepare for competition. Repeat rehearsals of the upcoming fight will help improve results. SSS can improve results in Boxing, Taekwondo, Karate, and Fencing. 41 sets of medals will be awarded in these sports at the 2020 Olympic Games.Keywords: boxing, combat sports, fight simulation, shadow sparring
Procedia PDF Downloads 132391 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 89390 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education
Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke
Abstract:
This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education
Procedia PDF Downloads 21389 The Implications of Technological Advancements on the Constitutional Principles of Contract Law
Authors: Laura Çami (Vorpsi), Xhon Skënderi
Abstract:
In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.Keywords: technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract
Procedia PDF Downloads 152388 Development of a Plant-Based Dietary Supplement to Address Critical Micronutrient Needs of Women of Child-Bearing Age in Europe
Authors: Sara D. Garduno-Diaz, Ramona Milcheva, Chanyu Xu
Abstract:
Women’s reproductive stages (pre-pregnancy, pregnancy, and lactation) represent a time of higher micronutrient needs. With a healthy food selection as the first path of choice to cover these increased needs, tandem micronutrient supplementation is often required. Because pregnancy and lactation should be treated with care, all supplements consumed should be of quality ingredients and manufactured through controlled processes. This work describes the process followed for the development of plant-based multiple micronutrient supplements aimed at addressing the growing demand for natural ingredients of non-animal origin. A list of key nutrients for inclusion was prioritized, followed by the identification and selection of qualified raw ingredient providers. Nutrient absorption into the food matrix was carried out through natural processes. The outcome is a new line of products meeting the set criteria of being gluten and lactose-free, suitable for vegans/vegetarians, and without artificial conservatives. In addition, each product provides the consumer with 10 vitamins, 6 inorganic nutrients, 1 source of essential fatty acids, and 1 source of phytonutrients each (maca, moringa, and chlorella). Each raw material, as well as the final product, was submitted to microbiological control three-fold (in-house and external). The final micronutrient mix was then tested for human factor contamination, pesticides, total aerobic microbial count, total yeast count, and total mold count. The product was created with the aim of meeting product standards for the European Union, as well as specific requirements for the German market in the food and pharma fields. The results presented here reach the point of introduction of the newly developed product to the market, with acceptability and effectiveness results to be published at a later date.Keywords: fertility, lactation, organic, pregnancy, vegetarian
Procedia PDF Downloads 147387 Safeners, Tools for Artificial Manipulation of Herbicide Selectivity: A Zea mays Case Study
Authors: Sara Franco Ortega, Alina Goldberg Cavalleri, Nawaporn Onkokesung, Richard Dale, Melissa Brazier-Hicks, Robert Edwards
Abstract:
Safeners are agrochemicals that enhance the selective chemical control of wild grasses by increasing the ability of the crop to metabolise the herbicide. Although these compounds are widely used, their mode of action is not well understood. It is known that safeners enhance the metabolism of herbicides, by up-regulating the associated detoxification system we have termed the xenome. The xenome proteins involved in herbicide metabolism have been previously divided into four different phases, with cytochrome P450s (CYPs) playing a key role in phase I metabolism by catalysing hydroxylation and dealkylation reactions. Subsequently, glutathione S-transferases (GSTs) and UDP-glucosyltransferases lead to the formation of Phase II conjugates prior to their transport into the vacuole by ABCs transporters (Phase III). Maize (Zea mays), was been treated with different safeners to explore the selective induction of xenome proteins, with a special interest in the regulation of the CYP superfamily. Transcriptome analysis enabled the identification of key safener-inducible CYPs that were then functionally assessed to determine their role in herbicide detoxification. In order to do that, CYP’s were codon optimised, synthesised and inserted into the yeast expression vector pYES3 using in-fusion cloning. CYP’s expressed as recombinant proteins in a strain of yeast engineered to contain the P450 co-enzyme (cytochrome P450 reductase) from Arabidopsis. Microsomes were extracted and treated with herbicides of different chemical classes in the presence of the cofactor NADPH. The reaction products were then analysed by LCMS to identify any herbicide metabolites. The results of these studies will be presented with the key CYPs identified in maize used as the starting point to find orthologs in other crops and weeds to better understand their roles in herbicide selectivity and safening.Keywords: CYPs, herbicide detoxification, LCMS, RNA-Seq, safeners
Procedia PDF Downloads 138386 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method
Authors: Laheeb M. Ibrahim, Ibrahim A. Salih
Abstract:
Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO
Procedia PDF Downloads 533385 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept
Authors: Igor Vishnevskyi
Abstract:
Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling
Procedia PDF Downloads 80384 E-Learning Platform for School Kids
Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.
Abstract:
E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.Keywords: math, education games, e-learning platform, artificial intelligence
Procedia PDF Downloads 157383 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients
Authors: Archana S., Usha Rani G., Anand Balakrishnan, Sanjana R., Solomon F., Vijayalakshmi J.
Abstract:
Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)
Procedia PDF Downloads 55382 Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization
Authors: Jose Manuel Rodriguez-Dominguez, Rodrigo Barba-Gonzalez, Ernesto Tapia-Campos
Abstract:
Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work.Keywords: Amaryllidaceae, cytogenetics, ornamental, ploidy level
Procedia PDF Downloads 194381 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying
Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job
Abstract:
As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning
Procedia PDF Downloads 113