Search results for: ad-hoc network
3025 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 1753024 Using Power Flow Analysis for Understanding UPQC’s Behaviors
Authors: O. Abdelkhalek, A. Naimi, M. Rami, M. N. Tandjaoui, A. Kechich
Abstract:
This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done.Keywords: UPQC, Power flow analysis, shunt filter, series filter.
Procedia PDF Downloads 5703023 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots
Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra
Abstract:
Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation
Procedia PDF Downloads 1883022 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach
Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou
Abstract:
The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation
Procedia PDF Downloads 1693021 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 2573020 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 993019 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 643018 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 6383017 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution
Authors: S. Jayasinghe, R. B. N. Dissanayake
Abstract:
Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.Keywords: mathematical model, network optimization, linear programming
Procedia PDF Downloads 3463016 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents
Authors: Rakesh Namdeti
Abstract:
Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network
Procedia PDF Downloads 753015 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1113014 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)
Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone
Procedia PDF Downloads 3663013 Integrating Wound Location Data with Deep Learning for Improved Wound Classification
Authors: Mouli Banga, Chaya Ravindra
Abstract:
Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.Keywords: wound classification, MobileNetV2, ResNet50, multimodel
Procedia PDF Downloads 313012 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform
Authors: Ashagrie Getnet Flattie
Abstract:
Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.Keywords: LTE, MIMO, path loss, UAV
Procedia PDF Downloads 2783011 The Evolution of National Technological Capability Roles From the Perspective of Researcher’s Transfer: A Case Study of Artificial Intelligence
Authors: Yating Yang, Xue Zhang, Chengli Zhao
Abstract:
Technology capability refers to the comprehensive ability that influences all factors of technological development. Among them, researchers’ resources serve as the foundation and driving force for technology capability, representing a significant manifestation of a country/region's technological capability. Therefore, the cross-border transfer behavior of researchers to some extent reflects changes in technological capability between countries/regions, providing a unique research perspective for technological capability assessment. This paper proposes a technological capability assessment model based on personnel transfer networks, which consists of a researchers' transfer network model and a country/region role evolution model. It evaluates the changes in a country/region's technological capability roles from the perspective of researcher transfers and conducts an analysis using artificial intelligence as a case study based on literature data. The study reveals that the United States, China, and the European Union are core nodes, and identifies the role evolution characteristics of several major countries/regions.Keywords: transfer network, technological capability assessment, central-peripheral structure, role evolution
Procedia PDF Downloads 923010 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3533009 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 1093008 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3033007 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 3003006 Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development
Authors: Dyah Titisari Widyastuti
Abstract:
Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination.Keywords: accessibility of daily mobility, pedestrian-friendly district, rail-station district, transit oriented development
Procedia PDF Downloads 2323005 The Application of Dynamic Network Process to Environment Planning Support Systems
Authors: Wann-Ming Wey
Abstract:
In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)
Procedia PDF Downloads 3443004 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 2553003 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks
Authors: Siddhartha Chauhan, Nitin Kumar Kotania
Abstract:
Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks
Procedia PDF Downloads 3903002 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients
Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund
Abstract:
This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients
Procedia PDF Downloads 1523001 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 1343000 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 1332999 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire
Authors: Odile Amoncou, Djedje-Kossu Zahui
Abstract:
The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications
Procedia PDF Downloads 882998 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 722997 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4292996 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 24