Search results for: Adult dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2456

Search results for: Adult dataset

746 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 477
745 Story of Sexual Violence: Curriculum as Intervention

Authors: Karen V. Lee

Abstract:

The background and significance of this study involves autoethnographic research about a music teacher learning how education and curriculum planning can help her overcome harmful and lasting career consequences from sexual violence. Curriculum surrounding intervention resources from education helps her cope with consequences influencing her career as music teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve counseling, curriculum, adult education to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how stories provide helpful resources to teachers who have been victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life as teacher with previous sexual violence. In conclusion, the research has a reflexive storied framework with video and music from curriculum planning that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using education and curriculum as intervention resources to accompany storied research can provide transformative aspects that can contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Thus, continued education and curriculum that supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.

Keywords: education, curriculum, sexual violence, storied autoethnography

Procedia PDF Downloads 260
744 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble

Authors: Jaehong Yu, Seoung Bum Kim

Abstract:

Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.

Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking

Procedia PDF Downloads 339
743 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 93
742 Effect of Core Stability Exercises on Trunk Muscle Balance in Healthy Adult Individuals

Authors: Amira A. A. Abdallah, Amir A. Beltagi

Abstract:

Background: Core stability training has recently attracted attention for improving muscle balance and optimizing performance in healthy and unhealthy individuals. Purpose: This study investigated the effect of beginner’s core stability exercises on trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals participated in the study. They were randomly assigned to two groups; experimental “group I, n=20” and control “group II, n=15”. Their mean age, weight and height were 20.7±2.4 vs. 20.3±0.61 years, 66.5±12.1 vs. 68.57±12.2 kg and 166.7±7.8 vs. 164.28 ±7.59 cm. for group I vs. group II. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The 2x2 Mixed Design ANOVA revealed that there were no significant differences (p>0.025) in the trunk flexors’/extensors’ peak torque ratio between the pre-test and post-test conditions for either group. Moreover, there were no significant differences (p>0.025) in the trunk flexion/extension ratios between both groups at either condition. However, the 2x2 Mixed Design MANOVA revealed significant increases (p<0.025) in the trunk flexors’ and extensors’ peak torques in the post-test condition compared with the pre-test in group I with no significant differences (p>0.025) in group II. Moreover, there was a significant increase (p<0.025) in the trunk flexors’ peak torque only in group I compared with group II in the post-test condition with no significant differences in the other conditions. Interpretation/Conclusion: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.

Keywords: core stability, isokinetic, trunk muscles, muscle balance

Procedia PDF Downloads 260
741 Coherency of First Year Nursing Students' Lifestyles with Their Future Career

Authors: Maria Rodriguez-Gazquez, Sara Chaparro-Hernandez, Jose Rafael Gonzalez-Lopez

Abstract:

Introduction: Nurses are models in healthy behaviors for their patients. This is why it is important for these professionals to not only have a good knowledge of healthy behaviors but also practice. Today’s nursing students will be tomorrow’s professionals and to fulfill their role in caring they not only need knowledge, they also must maintain behaviors which enable them to improve and protect both the health of others and their own. This is why the university is a unique environment of opportunities to foster the maximum potential of health. To care for others we first have to take care of ourselves. It is important for these behaviors in Nursing students to be evaluated during the years of their university education in order to design timely interventions which improve the health behaviors of the future professionals. Aim: The objective of this study was to evaluate the lifestyles of first year nursing students of two Universities. Methodology: Cross-sectional study. In 2014, 140 first year Nursing students of two Universities Seville –US- (Spain -Europe, n=37) and Antioquia –UA- (Colombia -South America, n=93) self-reported the FANTASTIC Lifestyle checklist. Results: Findings reveal that (I) UA students doubled the percentage of dangerous or bad lifestyles with respect to the US students, (II) the lifestyles are not appropriate in 1 of 3 of nursing students in both Universities, (II) there are statistically significant differences for family support items (higher in US), positive thinkers (higher in UA), the use of safety belts and alcohol consumption before driving (higher in US). Discussion: The nursing students are mostly young people who are at a stage in which some of the most important behaviors for adult life can still be molded. It is necessary to develop educational interventions in their Nursing curricula to strengthen healthy behaviours during training. Nursing Schools not only have the duty to train professionals, but to also be agents that foster the health, welfare and quality of those who study and work there. It must encourage knowledge and skills oriented to healthy lifestyles.

Keywords: cross-sectional studies, life style, nursing students, questionnaires

Procedia PDF Downloads 273
740 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 142
739 Quantitative Evaluation of Mitral Regurgitation by Using Color Doppler Ultrasound

Authors: Shang-Yu Chiang, Yu-Shan Tsai, Shih-Hsien Sung, Chung-Ming Lo

Abstract:

Mitral regurgitation (MR) is a heart disorder which the mitral valve does not close properly when the heart pumps out blood. MR is the most common form of valvular heart disease in the adult population. The diagnostic echocardiographic finding of MR is straightforward due to the well-known clinical evidence. In the determination of MR severity, quantification of sonographic findings would be useful for clinical decision making. Clinically, the vena contracta is a standard for MR evaluation. Vena contracta is the point in a blood stream where the diameter of the stream is the least, and the velocity is the maximum. The quantification of vena contracta, i.e. the vena contracta width (VCW) at mitral valve, can be a numeric measurement for severity assessment. However, manually delineating the VCW may not accurate enough. The result highly depends on the operator experience. Therefore, this study proposed an automatic method to quantify VCW to evaluate MR severity. Based on color Doppler ultrasound, VCW can be observed from the blood flows to the probe as the appearance of red or yellow area. The corresponding brightness represents the value of the flow rate. In the experiment, colors were firstly transformed into HSV (hue, saturation and value) to be closely align with the way human vision perceives red and yellow. Using ellipse to fit the high flow rate area in left atrium, the angle between the mitral valve and the ultrasound probe was calculated to get the vertical shortest diameter as the VCW. Taking the manual measurement as the standard, the method achieved only 0.02 (0.38 vs. 0.36) to 0.03 (0.42 vs. 0.45) cm differences. The result showed that the proposed automatic VCW extraction can be efficient and accurate for clinical use. The process also has the potential to reduce intra- or inter-observer variability at measuring subtle distances.

Keywords: mitral regurgitation, vena contracta, color doppler, image processing

Procedia PDF Downloads 370
738 Sexual Health in the Over Forty-Fives: A Cross-Europe Project

Authors: Tess Hartland, Moitree Banerjee, Sue Churchill, Antonina Pereira, Ian Tyndall, Ruth Lowry

Abstract:

Background: Sexual health services and policies for middle-aged and older adults are underdeveloped, while global sexually transmitted infections in this age group are on the rise. The Interreg cross-Europe Sexual Health In Over 45s (SHIFT) project aims to increase participation in sexual health services and improve sexual health and wellbeing in people aged over 45, with an additional focus on disadvantaged groups. Methods: A two-pronged mixed-methodology is being used to develop a model for good service provision in sexual health for over 45s. (1) Following PRISMA-ScR guidelines, a scoping review is being conducted, using the databases PsychINFO, Web of Science, ERIC and PubMed. A key search strategy using terms around sexual health, good practice, over 45s and disadvantaged groups. The initial search for literature yielded 7914 results. (2) Surveys (n=1000) based on the Theory of Planned Behaviour are being administered across the UK, Belgium and Netherlands to explore current sexual health knowledge, awareness and attitudes. Expected results: It is expected that sexual health needs and potential gaps in service provision will be identified in order to inform good practice for sexual health services for the target population. Results of the scoping review are being analysed, while focus group and survey data is being gathered. Preliminary analysis of the survey data highlights barriers to access such as limited risk awareness and stigma. All data analysis will be completed by the time of the conference. Discussion: Findings will inform the development of a model to improve sexual health and wellbeing for among over 45s, a population which is often missed in sexual health policy improvement.

Keywords: adult health, disease prevention, health promotion, over 45s, sexual health

Procedia PDF Downloads 130
737 No Histological and Biochemical Changes Following Administration of Tenofovir Nanoparticles: Animal Model Study

Authors: Aniekan Peter, ECS Naidu, Edidiong Akang, U. Offor, R. Kalhapure, A. A. Chuturgoon, T. Govender, O. O. Azu

Abstract:

Introduction: Nano-drugs are novel innovations in the management of human immunodeficiency virus (HIV) pandemic, especially resistant strains of the virus in their sanctuary sites: testis and the brain. There are safety concerns to be addressed to achieve the full potential of this new drug delivery system. Aim of study: Our study was designed to investigate toxicity profile of Tenofovir Nanoparticle (TDF-N) synthesized by University of Kwazulu-Natal (UKZN) Nano-team for prevention and treatment of HIV infection. Methodology: Ten adult male Sprague-Dawley rats maintained at the Animal House of the Biomedical Resources Unit UKZN were used for the study. The animals were weighed and divided into two groups of 5 animal each. Control animals (A) were administered with normal saline. Therapeutic dose (4.3 mg/kg) of TDF-N was administered to group B. At the end of four weeks, animals were weighed and sacrificed. Liver and kidney were removed fixed in formal saline, processed and stained using H/E, PAS and MT stains for light microscopy. Serum was obtained for renal function test (RFT), liver function test (LFT) and full blood count (FBC) using appropriate analysers. Cellular measurements were done using ImageJ and Leica software 2.0. Data were analysed using graph pad 6, values < 0.05 were significant. Results: We reported no histological alterations in the liver, kidney, FBC, LFT and RFT between the TDF-N animals and saline control. There were no significant differences in weight, organo-somatic index and histological measurements in the treatment group when compared with saline control. Conclusion/recommendations: TDF-N is not toxic to the liver, kidney and blood cells in our study. More studies using human subjects is recommended.

Keywords: tenofovir nanoparticles, liver, kidney, blood cells

Procedia PDF Downloads 183
736 Bacterial Interactions of Upper Respiratory Tract Microbiota

Authors: Sarah Almuhayya, Andrew Mcbain, Gavin Humphreys

Abstract:

Background. The microbiome of the upper respiratory tract (URT) has received less research attention than other body sites. This study aims to investigate the microbial ecology of the human URT with a focus on the antagonism between the corynebacteria and staphylococci. Methods. Mucosal swabs were collected from the anterior nares and nasal turbinates of 20 healthy adult subjects. Genomic DNA amplification targeting the (V4) of the 16Sr RNA gene was conducted and analyzed using QIIME. Nasal swab isolates were cultured and identified using near full-length sequencing of the 16S rRNA gene. Isolates identified as corynebacteria or staphylococci were typed using (rep-PCR). Antagonism was determined using an agar-based inhibition assay. Results. Four major bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) were identified from all volunteers. The typing of cultured staphylococci and corynebacteria suggested that intra-individual strain diversity was limited. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between staphylococci and corynebacteria. Despite the apparent antagonism between these genera, it was limited when investigated on agar. Of 1000 pairwise interactions, observable zones of inhibition were only reported between a single strain of C.pseudodiphtheriticum and S.aureus. Imaging under EM revealed this effect to be bactericidal with clear lytic effects on staphylococcal cell morphology. Conclusion. Nasal microbiota is complex, but culturable staphylococci and corynebacteria were limited in terms of clone type. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between these genera suggesting an antagonism or competition between these taxonomic groups.

Keywords: nasal, microbiota, S.aureus, microbioal interaction

Procedia PDF Downloads 115
735 Liminal Disabled Tweens’ Identification with Disney Animations in Algeria

Authors: Selma Aitsaid

Abstract:

Disney canon texts, mainly animations, are believed to have authority over children’s identities. However, most research on Disney tends to focus either on textual analysis, or Western and non-western adult audiences. In fact, there is a lack of scholarship on Disney child audiences from non-western countries though children are believed to be Disney‘s main target audience, and Disney is a global corporation that appeals to audiences from all over the world as well. Therefore, qualitative research was conducted by interviewing around twenty five Algerian disabled tweens between the age 11 to 14 on their familiarity and identification with Disney animations. The reason behind choosing disabled children is because minority groups have not been interviewed on their possible interpretations of Disney animations despite the fact that these texts have been interpreted by some scholars as being inclusive of minority groups such as queer and disabled people. To that end, this project aims to decolonize disability and Global Southern Academia by three ways. The first way is to uncover inequalities of the metropolitan thought enshrined in the global power of the metropole vis a vis the subaltern. This approach was called postcolonialism. The second way is to value non-western academic and non-academic resources. This is the project of ‘indigenous knowledge. The third way is to analyse the forms of knowledge that were produced by intellectuals in colonized countries as a response to Western Academic hegemony. Consequently, this research endeavored to unravel the inequality, the dynamics of neocolonialism and subordination to colonial discourses within the Algerian discourse on disability and other knowledge such as tweenhood, childhood and non-western viewership, which are mainly defined through Western lenses. Algerian resources were included with the aim of enhancing an academic collaboration between the North and South as well. The findings showed that the postcolonial context had an impact on how children perceive Disney animations. They also demonstrated that children are able to negotiate the meaning of Disney texts within their own context.

Keywords: child audiences, Algeria, childhood, disability, Disney animations, global South, postcolonialism, tweens, Western hegemony

Procedia PDF Downloads 118
734 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 203
733 The Training Demands of Nursing Assistants on Urinary Incontinence in Nursing Homes: A Mixed Methods Study

Authors: Lulu Liao, Huijing Chen, Yinan Zhao, Hongting Ning, Hui Feng

Abstract:

Urinary tract infection rate is an important index of care quality in nursing homes. The aim of the study is to understand the nursing assistant's current knowledge and attitudes of urinary incontinence and to explore related stakeholders' viewpoint about urinary incontinence training. This explanatory sequential study used Knowledge, Practice, and Attitude Model (KAP) and Adult Learning Theories, as the conceptual framework. The researchers collected data from 509 nursing assistants in sixteen nursing homes in Hunan province in China. The questionnaire survey was to assess the knowledge and attitude of urinary incontinence of nursing assistants. On the basis of quantitative research and combined with focus group, training demands were identified, which nurse managers should adopt to improve nursing assistants’ professional practice ability in urinary incontinence. Most nursing assistants held the poor knowledge (14.0 ± 4.18) but had positive attitudes (35.5 ± 3.19) toward urinary incontinence. There was a significant positive correlation between urinary incontinence knowledge and nursing assistants' year of work and educational level, urinary incontinence attitude, and education level (p < 0.001). Despite a general awareness of the importance of prevention of urinary tract infections, not all nurse managers fully valued the training in urinary incontinence compared with daily care training. And the nursing assistants required simple education resources to equip them with skills to address problem about urinary incontinence. The variety of learning methods also highlighted the need for educational materials, and nursing assistants had shown a strong interest in online learning. Related education material should be developed to meet the learning need of nurse assistants and provide suitable training method for planned quality improvement in urinary incontinence.

Keywords: mixed methods, nursing assistants, nursing homes, urinary incontinence

Procedia PDF Downloads 137
732 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia

Authors: Arragaw Alemayehu, Woldeamlak Bewket

Abstract:

The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.

Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend

Procedia PDF Downloads 438
731 The Nexus Between the Rise of Autocratisation and the Deeper Level of BRI Engagement

Authors: Dishari Rakshit, Mitchell Gallagher

Abstract:

The global landscape is witnessing a disconcerting surge in democratic backsliding, engendering concerns over the rise of autocratisation. This research demonstrates the intricate relationship between a nation's domestic propensity for autocratic governance and its trade relations with China. Giving prominence to Belt and Road Initiative (BRI) investments, this study adopts a rigorous neorealist framework to discern the complexities of nations' economic interests amidst an anarchic milieu and how these interests may transcend steadfast adherence to democratic principles. The burgeoning bipolarity in the international political setting serves as a backdrop to our inquiry. To operationalise our hypothesis, we conduct a large-scale 'N' study, encompassing a comprehensive global dataset comprising countries' democracy indicators, total trade volume with China, and cumulative Chinese BRI investments over a substantial temporal expanse. By meticulously examining BRI signatories’, we aim to ascertain the potential accentuation of democratic backsliding among these nations. To test our empirical underpinning, we will validate our findings through cogent case studies. Our analysis adds to the scholarship on multifaceted interactions between trade dynamics and democratic governance within the fabric of the international political landscape. In its culmination, the paper addresses the question- has the erstwhile grandeur of bipolarity resurfaced in the contemporary global panorama? Concurrently, we explore the nexus between the ascendant wave of autocratisation as a by-product of the Beijing Consensus? Pertinent to policymakers, our discoveries stand poised to furnish a comprehensive grasp of the manifold implications arising from the deepening entanglements with China under the auspices of the BRI.

Keywords: democracy, autocracy, china, belt road initiative, international political economy

Procedia PDF Downloads 71
730 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
729 Market Chain Analysis of Onion: The Case of Northern Ethiopia

Authors: Belayneh Yohannes

Abstract:

In Ethiopia, onion production is increasing from time to time mainly due to its high profitability per unit area. Onion has a significant contribution to generating cash income for farmers in the Raya Azebo district. Therefore, enhancing onion producers’ access to the market and improving market linkage is an essential issue. Hence, this study aimed to analyze structure-conduct-performance of onion market and identifying factors affecting the market supply of onion producers. Data were collected from both primary and secondary sources. Primary data were collected from 150 farm households and 20 traders. Four onion marketing channels were identified in the study area. The highest total gross margin is 27.6 in channel IV. The highest gross marketing margin of producers of the onion market is 88% in channel II. The result from the analysis of market concentration indicated that the onion market is characterized by a strong oligopolistic market structure, with the buyers’ concentration ratio of 88.7 in Maichew town and 82.7 in Mekelle town. Lack of capital, licensing problems, and seasonal supply was identified as the major entry barrier to onion marketing. Market conduct shows that the price of onion is set by traders while producers are price takers. Multiple linear regression model results indicated that family size in adult equivalent, irrigated land size, access to information, frequency of extension contact, and ownership of transport significantly determined the quantity of onion supplied to the market. It is recommended that strengthening and diversifying extension services in information, marketing, post-harvest handling, irrigation application, and water harvest technology is highly important.

Keywords: oligopoly, onion, market chain, multiple linear regression

Procedia PDF Downloads 146
728 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 142
727 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development

Authors: Hui Wang

Abstract:

Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.

Keywords: citation analysis, collection assessment, collection development, quantitative analysis

Procedia PDF Downloads 218
726 Anti-Ulcer Activity of Hydro Alcoholic Extract of Ficus bengalensis Linn Bark in Experimental Rats

Authors: Jagdish Baheti, Sampat Navale

Abstract:

The present study was performed to evaluate the anti-ulcerogenic activity of hydro-alcoholic extract of Ficus bengalensis Linn. against ethanol-induced gastric mucosal injury in rats and pylorus ligation gastric secretion in rats. Five groups of adult wistar rats were orally pre-treated respectively with carboxy methyl cellulose (CMC) solution (ulcer control group), Omeprazole 20 mg/kg (reference group), and 100, 200 and 300 mg/kg F. bengalensis Linn. bark extract in CMC solution (experimental groups), one hour before oral administration of absolute ethanol to generate gastric mucosal injury. Rats were sacrificed and the ulcer index, gastric volume, gastric pH, free acidity, total acidity of the gastric content was determined. Grossly, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with F. bengalensis Linn. bark extract exhibited significant protection of gastric mucosal injury in both model. Histological studies revealed that ulcer control group exhibited severe damage of gastric mucosa, along with edema and leucocytes infiltration of submucosal layer compared to rats pre-treated with F. bengalensis Linn. bark extract which showed gastric mucosal protection, reduction or absence of edema and leucocytes infiltration of submucosal layer. Acute toxicity study did not manifest any toxicological signs in rats. The present finding suggests that F. bengalensis Linn. bark extract promotes ulcer protection as ascertained grossly and histologically compared to the ulcer control group.

Keywords: Ficus bengalensis Linn., gastric ulcer, hydroalcoholic, pylorus ligation

Procedia PDF Downloads 294
725 Effect of Perioperative Protocol of Care on Clinical Outcomes among Patients Undergoing Coronary Artery Bypass Graft

Authors: Manal Ahmed, Amal Shehata, Shereen Deeb

Abstract:

The study's purpose was to determine the effect of the perioperative protocol of care on clinical outcomes among patients undergoing coronary artery bypass graft. Subjects: A sample of 100 adult patients who were planned for coronary artery bypass graft, were selected and divided alternatively and randomly into two equal groups (50 study -50 control).The study was carried out at National heart Institute in Cairo and open heart surgical intensive care unit in Shebin El-Kom Teaching Hospital. Instruments: Four instruments were used for data collection: Interviewing questionnaire, dyspnea analogue scale, Biophysiological measurement instrument, and Compliance assessment sheet. Results: There were statistically significant differences between both groups regarding most respiratory system assessment findings at discharge. More than two-thirds of the study group of the current study had a continuous and regular commitment to diet regimen, which ranked first followed by the compliance of daily living activities then quitting smoking. Conclusions: The perioperative protocol of care has a significant improving effect on respiratory findings, dyspnea degree, duration of mechanical ventilation, length of hospital stay, compliance to diet, therapeutic regimen, daily living activities, and quit smoking among study group undergoing CABG. Recommendations: Perioperative protocol of care should be carried out for CABG patients at open-heart surgical units as well as an illustrative colored booklet about CAD, CABG and perioperative care should be available and distributed to all CABG patients.

Keywords: perioperative, effect, clinical outcomes, coronary artery, bypass graft, protocol of care

Procedia PDF Downloads 139
724 Reversal of Testicular Damage and Subfertility by Resveratrol

Authors: Samy S. Eleawa, Mahmoud A. Alkhateeb, Fahaid H. Alhashem, Ismaeel bin-Jaliah, Hussein F. Sakr, Hesham M. Elrefaey, Abbas O. Elkarib, Mohammad A. Haidara, Abdullah S. Shatoor, Mohammad A. Khalil

Abstract:

This effect of Resveratrol (RES) against CdCl2- induced toxicity in the rat testes was investigated. Seven experimental groups of adult male rats were formulated as follows: A) Controls + NS, B) Control+ vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2 +NS, E) CdCl2+ vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH, and testosterone were measured in all groups. Testicular levels of TBARS and Super Oxide Dismutase (SOD) activity were also measured. Epidydidimal semen analysis was performed and testicular expression of Bcl-2, p53 and Bax were assessed by RT-PCR. Also, histopathological changes of testes were examined microscopically and described. Pre and Post administration of RES in cadmium chloride-intoxicated rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. Not only RES attenuated cadmium chloride induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of both pro-apoptotic genes p53 and Bax. Resveratrol protected from and partially reversed cadmium chloride testicular via upregulation of Bcl2 and down regulation of p53 and Bax gene expression. Antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression. These findings have far reaching implications on subfertility and impotency frequently seen in hypertensive as well as metabolic syndrome patients.

Keywords: resveratrol, cadmium, infertility, sperm, testis, metabolic syndrome

Procedia PDF Downloads 535
723 Music Education in Aged Care: Positive Ageing through Instrumental Music Learning

Authors: Ellina Zipman

Abstract:

This research investigates the place of music education in aged care facilities through the implementation of a program of regular piano lessons for residents. Using a qualitative case study methodology, the research explores aged care residents’ experiences in learning to play the piano. Since the aged care homes are unlikely places for formal learning and since older adults, especially in residential care, are not considered likely candidates for learning, this research opens the door for innovative and transformative thinking about where and to whom educational programs can be delivered. By addressing the educational needs of residents in aged care facilities, this research fills the gap in the literature. The research took place in Australia in two of Melbourne’s residential aged care facilities, engaging two residents (a nonagenarian female and an octogenarian male) to participate in 12-months weekly individual piano lessons. The data was collected through video recording of lessons, observations, interviews, emails, and a reflective journal. Data analysis was done using Nvivo and hard copy analysis with identifications of themes. The case studies revealed that passion for music was a major driver in participants’ motivation to engage in a long-term piano lessons program. This participation led to experiences of positive emotions, positive attitude, successes and challenges, the exercise of control, maintaining and building new relationships, improved self-confidence through autonomy and independent skills development, and discovering new identities through finding a new purpose and new roles in life. Speaking through participants’ voices, this research project demonstrates the importance of music education for older adults and hopes to influence transformation in the residential aged care sector.

Keywords: adult music education, quality of life, passion, positive ageing, wellbeing

Procedia PDF Downloads 87
722 Fibromyalgia and Personality: A Review of the Different Personality Types Identified

Authors: Lize Tibiriçá, Ronnie Lee, Samantha Behbahani

Abstract:

Fibromyalgia (FM) is a musculoskeletal disorder affecting men and women of different ages and cultures. The cause of this disorder is unknown; however, studies suggest an etiology that involves biological and psychosocial factors. Few studies have shown that a personality type such as neuroticism is associated with chronic pain conditions. Past research has explored whether patients with FM present with a specific personality trait. However, studies have used different methods (i.e. Minnesota Multiphasic Personality Inventory (MMPI), Sociotropy and Autonomy Scale (SAS) and Dysfunctional Attitude Scale (DAS), Tridimensional Personality Questionnaire or Temperament and Character Inventory (TCI), Karolinska scale of personality, Big Five Inventory or NEO Personality Inventory) to explore the connection between FM and a personality type. They have identified personality types that present similar characteristics but vary in the name (i.e. high harm avoidance and low novelty seeking, psychasthenia/muscular tension/somatic anxiety, neuroticism). Although Zuckerman-Kuhlman Personality Questionnaire and the Big Five Inventory differ in terms of content and structure, both of them identify neuroticism as the personality type of FM patients, and the former also identifies these patients as having a low sociability personality trait. Previous research also shows a trend of sociotropic personality style with FM patients that also suffer from Major Depressive Disorder. Participants in these studies were, for the most part, adult female and researchers have recognized that as a limitation and whether their findings can be generalized to men and younger patients with FM. Furthermore, most studies reviewed were conducted in Europe (i.e. Spain) and had a cross-sectional design. Future research should replicate past studies in different countries and consider conducting a longitudinal study. Although it is suspected that FM course is modulated by FM patients’ personality, it is not known whether individuals with similar personalities will develop FM. This review sought to explain the differences and similarities between the personality types identified. Limitations in the studies reviewed were addressed, and considerations for future research and treatment were discussed.

Keywords: chronic pain, fibromyalgia, neuroticism, personality type

Procedia PDF Downloads 323
721 Insulin Resistance in Patients with Chronic Hepatitis C Virus Infection: Upper Egypt Experience

Authors: Ali Kassem

Abstract:

Background: In the last few years, factors such as insulin resistance (IR) and hepatic steatosis have been linked to progression of hepatic fibrosis.Patients with chronic liver disease, and cirrhosis in particular, are known to be prone to IR. However, chronic HCV (hepatitis C) infection may induce IR, regardless of the presence of liver cirrhosis. Our aims are to study insulin resistance (IR) assessed by HOMA-IR (Homeostatic Model Assessment Insulin Resistance) as a possible risk factor in disease progression in cirrhotic patients and to evaluate the role of IR in hepatic fibrosis progression. The correlations of HOMA-IR values to laboratory, virological and histopathological parameters of chronic HCV are also examined. Methods: The study included 50 people divided into 30 adult chronic hepatitis C patients diagnosed by PCR (polymerase chain reaction) within previous 6 months and 20 healthy controls. The functional and morphological status of the liver were evaluated by ultrasonography and laboratory investigations including liver function tests and by liver biopsy. Fasting blood glucose and fasting insulin levels were measured and body mass index and insulin resistance were calculated. Patients having HOMA-IR >2.5 were labeled as insulin resistant. Results: Chronic hepatitis C patients with IR showed significantly higher mean values of BMI (body mass index) and fasting insulin than those without IR (P < 0.000). Patients with IR were more likely to have steatosis (p = 0.006), higher necroinflammatory activity (p = 0.05). No significant differences were found between the two groups regarding hepatic fibrosis. Conclusion: HOMA-IR measurement could represent a novel marker to identify the cirrhotic patients at greater risk for the progression of liver disease. As IR is a potentially modifiable risk factor, these findings may have important prognostic and therapeutic implications. Assessment of IR by HOMA-IR and improving insulin sensitivity are recommended in patients with HCV and related chronic liver disease.

Keywords: hepatic fibrosis, hepatitis C virus infection, hepatic steatosis, insulin resistance

Procedia PDF Downloads 154
720 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 22
719 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor

Authors: Tayyaba Azim, Bibi Amina

Abstract:

The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.

Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec

Procedia PDF Downloads 148
718 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 48
717 Effect of Z-VAD-FMK on in Vitro Viability of Dog Follicles

Authors: Leda Maria Costa Pereira, Maria Denise Lopes, Nucharin Songsasen

Abstract:

Mammalian ovaries contain thousands of follicles that eventually degenerate or die after culture in vitro. Caspase-3 is a key enzyme that regulating cell death. Our objective was to examine the influence of anti-apoptotic drug Z-VAD-FMK (pan-caspase inhibitor) on in vitro viability of dog follicles within the ovarian cortex. Ovaries were obtained from prepubertal (age, 2.5–6 months) and adult (age, 8 months to 2 years) bitches and ovarian cortical fragments were recovered. The cortices were then incubated on 1.5% (w/v) agarose gel blocks within a 24-wells culture plate (three cortical pieces/well) containing Minimum Essential Medium Eagle - Alpha Modification (Alpha MEM) supplemented with 4.2 µg/ml insulin, 3.8 µg/ml transferrin, 5 ng/ml selenium, 2 mM L-glutamine, 100 µg/mL of penicillin G sodium, 100 µg/mL of streptomycin sulfate, 0.05 mM ascorbic acid, 10 ng/mL of FSH and 0.1% (w/v) polyvinyl alcohol in humidified atmosphere of 5% CO2 and 5% O2. The cortices were divided in six treatment groups: 1) 10 ng/mL EGF (EGF V0); 2) 10 ng/mL of EGF plus 1 mM Z-VAD-FMK (EGF V1); 3) 10 ng/mL of EGF and 10 mM Z-VAD-FMK (EGF V10); 4) 1 mM Z-VAD-FMK; 5) 10 mM Z-VAD-FMK and (6) no EGF and Z-VAD-FMK supplementation. Ovarian follicles within the tissues were processed for histology and assessed for follicle density, viability (based on morphology) and diameter immediately after collection (Control) or after 3 or 7 days of in vitro incubation. Comparison among fresh and culture treatment group was performed using ANOVA test. There were no differences (P > 0.05) in follicle density and viability among different culture treatments. However, there were differences in this parameter between culture days. Specifically, culturing tissue for 7 days resulted in significant reduction in follicle viability and density, regardless of treatments. We found a difference in size between culture days when these follicles were cultured using 10 mM Z-VAD-FMK or 10 ng/mL EGF (EGF V0). In sum, the finding demonstrated that Z-VAD-FMK at the dosage used in the present study does not provide the protective effect to ovarian tissue during in vitro culture. Future studies should explore different Z-VAD-FMK dosages or other anti-apoptotic agent, such as surviving in protecting ovarian follicles against cell death.

Keywords: anti apoptotic drug, bitches, follicles, Z-VAD-FMK

Procedia PDF Downloads 361