Search results for: virtual synchronous generator (VSG)
243 Millimeter-Wave Silicon Power Amplifiers for 5G Wireless Communications
Authors: Kyoungwoon Kim, Cuong Huynh, Cam Nguyen
Abstract:
Exploding demands for more data, faster data transmission speed, less interference, more users, more wireless devices, and better reliable service-far exceeding those provided in the current mobile communications networks in the RF spectrum below 6 GHz-has led the wireless communication industry to focus on higher, previously unallocated spectrums. High frequencies in RF spectrum near (around 28 GHz) or within the millimeter-wave regime is the logical solution to meet these demands. This high-frequency RF spectrum is of increasingly important for wireless communications due to its large available bandwidths that facilitate various applications requiring large-data high-speed transmissions, reaching up to multi-gigabit per second, of vast information. It also resolves the traffic congestion problems of signals from many wireless devices operating in the current RF spectrum (below 6 GHz), hence handling more traffic. Consequently, the wireless communication industries are moving towards 5G (fifth generation) for next-generation communications such as mobile phones, autonomous vehicles, virtual reality, and the Internet of Things (IoT). The U.S. Federal Communications Commission (FCC) proved on 14th July 2016 three frequency bands for 5G around 28, 37 and 39 GHz. We present some silicon-based RFIC power amplifiers (PA) for possible implementation for 5G wireless communications around 28, 37 and 39 GHz. The 16.5-28 GHz PA exhibits measured gain of more than 34.5 dB and very flat output power of 19.4±1.2 dBm across 16.5-28 GHz. The 25.5/37-GHz PA exhibits gain of 21.4 and 17 dB, and maximum output power of 16 and 13 dBm at 25.5 and 37 GHz, respectively, in the single-band mode. In the dual-band mode, the maximum output power is 13 and 9.5 dBm at 25.5 and 37 GHz, respectively. The 10-19/23-29/33-40 GHz PA has maximum output powers of 15, 13.3, and 13.8 dBm at 15, 25, and 35 GHz, respectively, in the single-band mode. When this PA is operated in dual-band mode, it has maximum output powers of 11.4/8.2 dBm at 15/25 GHz, 13.3/3 dBm at 15/35 GHz, and 8.7/6.7 dBm at 25/35 GHz. In the tri-band mode, it exhibits 8.8/5.4/3.8 dBm maximum output power at 15/25/35 GHz. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authorsKeywords: Microwaves, Millimeter waves, Power Amplifier, Wireless communications
Procedia PDF Downloads 189242 Tiger Team Strategy as a Health District Response to the COVID-19 Pandemic in Sydney, Australia during the Period between March 2020 to January 2022
Authors: Rehana Khan
Abstract:
Background: The study investigates the experiences of Tiger Teams within the Sydney Local Health District during the COVID-19 pandemic. Aim: The aims were to understand the experiences of the Tiger Team members, to evaluate the effectiveness of Tiger Teams, and to elicit any learnings for future implementation of Tiger Teams in a similar context. Methods: Tiger Team members who worked from March 2020 to January 2022 were approached, with 23 members agreeing to participate in the study. Individual interviews were undertaken by a researcher on a virtual platform. Thematic analysis was used to analyse the data. Saturation was deemed to have been reached when no new themes or subthemes arose within the final three interviews. Results: Four themes emerged: diversity worked well in Tiger Teams; fear of the unknown and challenging conversations were the main challenges of Tiger Teams; improved use of resources and more structure around the strategy of the Tiger Team model would help in future implementations; and Sydney Local Health District’s response to the pandemic was uniformly considered effective in keeping the community safe. In relation to Sydney Local Health District’s response in future pandemics, participants suggested having a pool of staff in readiness to undertake Tiger Team duties when required; prioritise staff welfare at all levels of involvement during a pandemic; maintaining transparent communication and relationship building between Executive level, Tiger Team members and clinical floor level in relation to decision making; and improve documentation, including evaluations of the COVID-19 pandemic response. Implications: The study provides constructive insights into the experiences of Tiger Team members, and these findings will help inform future planning for surge and secondment of staff in public health emergencies.Keywords: Tiger Team, pandemic response, future planning, COVID-19
Procedia PDF Downloads 82241 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach
Authors: Wei Zhao
Abstract:
The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community
Procedia PDF Downloads 182240 Wearable Jacket for Game-Based Post-Stroke Arm Rehabilitation
Authors: A. Raj Kumar, A. Okunseinde, P. Raghavan, V. Kapila
Abstract:
Stroke is the leading cause of adult disability worldwide. With recent advances in immediate post-stroke care, there is an increasing number of young stroke survivors, under the age of 65 years. While most stroke survivors will regain the ability to walk, they often experience long-term arm and hand motor impairments. Long term upper limb rehabilitation is needed to restore movement and function, and prevent deterioration from complications such as learned non-use and learned bad-use. We have developed a novel virtual coach, a wearable instrumented rehabilitation jacket, to motivate individuals to participate in long-term skill re-learning, that can be personalized to their impairment profile. The jacket can estimate the movements of an individual’s arms using embedded off-the-shelf sensors (e.g., 9-DOF IMU for inertial measurements, flex-sensors for measuring angular orientation of fingers) and a Bluetooth Low Energy (BLE) powered microcontroller (e.g., RFduino) to non-intrusively extract data. The 9-DOF IMU sensors contain 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer to compute the quaternions, which are transmitted to a computer to compute the Euler angles and estimate the angular orientation of the arms. The data are used in a gaming environment to provide visual, and/or haptic feedback for goal-based, augmented-reality training to facilitate re-learning in a cost-effective, evidence-based manner. The full paper will elaborate the technical aspects of communication, interactive gaming environment, and physical aspects of electronics necessary to achieve our stated goal. Moreover, the paper will suggest methods to utilize the proposed system as a cheaper, portable, and versatile system vis-à-vis existing instrumentation to facilitate post-stroke personalized arm rehabilitation.Keywords: feedback, gaming, Euler angles, rehabilitation, augmented reality
Procedia PDF Downloads 278239 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence
Authors: Francesca Radice
Abstract:
Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation
Procedia PDF Downloads 78238 Housing First, Not Housing Only: The Life Skills Project
Authors: Sara Cumming, Julianne DiSanto, Leah Burton
Abstract:
Homelessness in Canada is a persistent problem. It has been widely argued that the best tactic for eradicating homelessness is to approach social issues from a Housing First perspective—an approach that centers on quickly moving people into permanent and independent housing and then providing them additional support and services as needed. It is recognized that life skills training is both necessary and an effective way to reduce cyclical homelessness; however, there is a scarcity of research on effective ways to teach life skills; this problem was exacerbated in a pandemic context, where in-person delivery was severely restricted or no longer possible. Very little attention has been paid to the diverse cultural needs of clients in a multicultural context and the need to foster cultural knowledge/awareness in individuals to successfully contribute to the cultural safety of communities. This research attempts to fill these gaps in the literature and in practice by employing a community-engaged research (CER) approach. Academic, government, funders, front-line staff, and clients at 15 not-for-profits from across the Greater Toronto Area in Ontario, Canada, collaborated to co-create a virtual, client-centric, equity, diversity, and inclusion (EDI) informed life skill learning management system. We employed a triangulation methodology for this research. An environmental scan was conducted for best practices. Two separate Creative Problem Solving Sessions were held with over 100 front-line workers, managers, and executive directors who work with homeless populations. Quantitative and open-ended surveys were completed by over 200 individuals with experience with homelessness. All sections of this research aimed to discover the areas of skills that individuals need to maintain housing and to ascertain what a more client-driven EDI approach to life skills training should include. This research will showcase which life skills are deemed essential for homeless and precariously housed individuals.Keywords: homelessness, Housing First, life skills, community engaged research
Procedia PDF Downloads 68237 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation
Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz
Abstract:
Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower
Procedia PDF Downloads 291236 Blockchain Is Facilitating Intercultural Entrepreneurship: Memoir of a Persian Non-Fungible Tokens Collection
Authors: Mohammad Afkhami, Saeid Reza Ameli Ranani
Abstract:
Since the bitcoin invention in 2008, blockchain technology surpassed so many innovations that the pioneer networks such as Ethereum are adaptable to host a decentral bunch of information containing pictures, audio, video, domains, etc., or even a metaverse versatile avatar. Transformation of tangible goods into virtual assets, known as AR-utility of luxury products, and the intermixture of reality and virtuality organized a worldwide, semi-regulated, and decentralized marketplace for digital goods. Non-fungible tokens (NFTs) are doing a great help to artists worldwide, sharing diverse cultural outlooks by setting up a remote cross-cultural corporation potential and, at the same time, metamorphosizing the middleman role and ceasing the necessity of having a SWIFT-connected bank account. Under critical sanctions, a group of artists in Tehran did not take for granted such an opportunity to show off their artworks undisturbed, offering an introspective attitude, exerting Iranian motifs while intermingling westernized symbols. The cryptocurrency market has already acquired allocation, and interest in the global domain, paving the way for a flourishing enthusiasm among entrepreneurs who have been preoccupied with high-tech start-ups before. In a project found by Iranian female artists, we decipher the ups and downs of the new cyberculture and the environment it provides to fairly promote the artwork and obstacles it put forward in the way of interested entrepreneurs as we get through the details of starting up an NFT collection. An in-depth interview and empirical encounters with diverse Social Network Sites (SNS) and the strategies that other successful projects deploy to sell their artworks in an international and, at the same time, an anonymous market is the main focus, which shapes the paper fieldwork perspective. In conclusion, we discuss strategies for promoting an NFT project.Keywords: NFT, metaverse, intercultural, art, illustration, start-up, entrepreneurship
Procedia PDF Downloads 103235 Most Recent Lifespan Estimate for the Itaipu Hydroelectric Power Plant Computed by Using Borland and Miller Method and Mass Balance in Brazil, Paraguay
Authors: Anderson Braga Mendes
Abstract:
Itaipu Hydroelectric Power Plant is settled on the Paraná River, which is a natural boundary between Brazil and Paraguay; thus, the facility is shared by both countries. Itaipu Power Plant is the biggest hydroelectric generator in the world, and provides clean and renewable electrical energy supply for 17% and 76% of Brazil and Paraguay, respectively. The plant started its generation in 1984. It counts on 20 Francis turbines and has installed capacity of 14,000 MWh. Its historic generation record occurred in 2016 (103,098,366 MWh), and since the beginning of its operation until the last day of 2016 the plant has achieved the sum of 2,415,789,823 MWh. The distinct sedimentologic aspects of the drainage area of Itaipu Power Plant, from its stretch upstream (Porto Primavera and Rosana dams) to downstream (Itaipu dam itself), were taken into account in order to best estimate the increase/decrease in the sediment yield by using data from 2001 to 2016. Such data are collected through a network of 14 automatic sedimentometric stations managed by the company itself and operating in an hourly basis, covering an area of around 136,000 km² (92% of the incremental drainage area of the undertaking). Since 1972, a series of lifespan studies for the Itaipu Power Plant have been made, being first assessed by Sir Hans Albert Einstein, at the time of the feasibility studies for the enterprise. From that date onwards, eight further studies were made through the last 44 years aiming to confer more precision upon the estimates based on more updated data sets. From the analysis of each monitoring station, it was clearly noticed strong increase tendencies in the sediment yield through the last 14 years, mainly in the Iguatemi, Ivaí, São Francisco Falso and Carapá Rivers, the latter situated in Paraguay, whereas the others are utterly in Brazilian territory. Five lifespan scenarios considering different sediment yield tendencies were simulated with the aid of the softwares SEDIMENT and DPOSIT, both developed by the author of the present work. Such softwares thoroughly follow the Borland & Miller methodology (empirical method of area-reduction). The soundest scenario out of the five ones under analysis indicated a lifespan foresight of 168 years, being the reservoir only 1.8% silted by the end of 2016, after 32 years of operation. Besides, the mass balance in the reservoir (water inflows minus outflows) between 1986 and 2016 shows that 2% of the whole Itaipu lake is silted nowadays. Owing to the convergence of both results, which were acquired by using different methodologies and independent input data, it is worth concluding that the mathematical modeling is satisfactory and calibrated, thus assigning credibility to this most recent lifespan estimate.Keywords: Borland and Miller method, hydroelectricity, Itaipu Power Plant, lifespan, mass balance
Procedia PDF Downloads 275234 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels
Authors: Lorenzo Petrucci
Abstract:
This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration
Procedia PDF Downloads 176233 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator
Authors: Di Yao, Gunther Prokop, Kay Buttner
Abstract:
Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory
Procedia PDF Downloads 267232 Effectiveness of Gamified Virtual Physiotherapy Patients with Shoulder Problems
Authors: A. Barratt, M. H. Granat, S. Buttress, B. Roy
Abstract:
Introduction: Physiotherapy is an essential part of the treatment of patients with shoulder problems. The focus of treatment is usually centred on addressing specific physiotherapy goals, ultimately resulting in the improvement in pain and function. This study investigates if computerised physiotherapy using gamification principles are as effective as standard physiotherapy. Methods: Physiotherapy exergames were created using a combination of commercially available hardware, the Microsoft Kinect, and bespoke software. The exergames used were validated by mapping physiotherapy goals of physiotherapy which included; strength, range of movement, control, speed, and activation of the kinetic chain. A multicenter, randomised prospective controlled trial investigated the use of exergames on patients with Shoulder Impingement Syndrome who had undergone Arthroscopic Subacromial Decompression surgery. The intervention group was provided with the automated sensor-based technology, allowing them to perform exergames and track their rehabilitation progress. The control group was treated with standard physiotherapy protocols. Outcomes from different domains were used to compare the groups. An important metric was the assessment of shoulder range of movement pre- and post-operatively. The range of movement data included abduction, forward flexion and external rotation which were measured by the software, pre-operatively, 6 weeks and 12 weeks post-operatively. Results: Both groups show significant improvement from pre-operative to 12 weeks in elevation in forward flexion and abduction planes. Results for abduction showed an improvement for the interventional group (p < 0.015) as well as the test group (p < 0.003). Forward flexion improvement was interventional group (p < 0.0201) with the control group (p < 0.004). There was however no significant difference between the groups at 12 weeks for abduction (p < 0.118067) , forward flexion (p < 0.189755) or external rotation (p < 0.346967). Conclusion: Exergames may be used as an alternative to standard physiotherapy regimes; however, further analysis is required focusing on patient engagement.Keywords: shoulder, physiotherapy, exergames, gamification
Procedia PDF Downloads 197231 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 299230 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows
Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld
Abstract:
Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV
Procedia PDF Downloads 87229 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites
Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan
Abstract:
All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite
Procedia PDF Downloads 100228 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers
Authors: Clare Cunningham
Abstract:
Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.Keywords: academic writing, students, undergraduates, writing retreat
Procedia PDF Downloads 200227 Yoga for Holistic Health Wellbeing
Authors: Pothula Madhusudhan Reddy
Abstract:
Introduction: Yoga is a way of life. of uniting the mind, body and soul. It is also an art of living the right way. The techniques of Yoga are very practical, so they can always be applied. This is the reason why Yoga has been practiced for thousands of years and is still valid today. Importance of Yoga: Yoga that helps to inculcate healthy habits and adopt a healthy lifestyle to achieve good health Research Aim: The aim of this study is to explore the potential benefits of yoga for holistic health and wellbeing, both at an individual and societal level The ultimate goal of human being is to attain the state of perfect freedom from the shackles of ignorance, which is the generator of all the pangs and miseries of life. Methodology: This research follows a thematic and practical experience approach. Yoga includes body postures and movements (stretching), breathing practices, imagery, meditation, and progressive relaxation techniques. Data Collection: The data for this research is collected through a combination of literature review, expert interviews, and practical yoga sessions. The literature review provides a comprehensive understanding of the principles and practices of yoga, while expert interviews offer insights from experienced practitioners. Practical yoga sessions allow for first hand experiences and observations, facilitating a deeper understanding of the subject matter. Analysis Procedures: The collected data is analyzed thematically, where key themes and patterns related to the benefits and effects of yoga on holistic health and wellbeing are identified. The findings are then interpreted and synthesized to draw meaningful conclusions. Questions Addressed: This research addresses the following questions: What are the potential benefits of yoga for holistic health and wellbeing? How does yoga promote rejuvenate the body, mind, and senses? What are the implications of a society embracing yoga for overall societal wellbeing and happiness? Findings: The research highlights that practicing yoga can lead to increased awareness of the body, mind, and senses. It promotes overall physical and mental health, helping individuals achieve a state of happiness and contentment. Moreover, the study emphasizes that a society embracing yoga can contribute to the development of a healthy and happy community. Theoretical Importance: The study of yoga for holistic health and wellbeing holds theoretical importance as it provides insights into the science of yoga and its impact on individuals and society. It contributes to the existing body of knowledge on the subject and further establishes yoga as a potential tool for enhancing overall wellness. Conclusion: The study concludes that yoga is a powerful practice for achieving holistic health and wellbeing. This research provides valuable insights into the science of yoga and its potential as a tool for promoting overall wellness.Keywords: yoga, asana, pranayama, meditation
Procedia PDF Downloads 84226 Motor Control Recovery Minigame
Authors: Taha Enes Kon, Vanshika Reddy
Abstract:
This project focuses on developing a gamified mobile application to aid in stroke rehabilitation by enhancing motor skills through interactive activities. The primary goal was to design a companion app for a passive haptic rehab glove, incorporating Google MediaPipe for gesture tracking and vibrotactile feedback. The app simulates farming activities, offering a fun and engaging experience while addressing the monotony of traditional rehabilitation methods. The prototype focuses on a single minigame, Flower Picking, which uses gesture recognition to interact with virtual elements, encouraging users to perform exercises that improve hand dexterity. The development process involved creating accessible and user-centered designs using Figma, integrating gesture recognition algorithms, and implementing unity-based game mechanics. Real-time feedback and progressive difficulty levels ensured a personalized experience, motivating users to adhere to rehabilitation routines. The prototype achieved a gesture detection precision of 90%, effectively recognizing predefined gestures such as the Fist and OK symbols. Quantitative analysis highlighted a 40% increase in average session duration compared to traditional exercises, while qualitative feedback praised the app’s immersive design and ease of use. Despite its success, challenges included rigidity in gesture recognition, requiring precise hand orientations, and limited gesture support. Future improvements include expanding gesture adaptability and incorporating additional minigames to target a broader range of exercises. The project demonstrates the potential of gamification in stroke rehabilitation, offering a scalable and accessible solution that complements clinical treatments, making recovery engaging and effective for users.Keywords: stroke rehabilitation, haptic feedback, gamification, MediaPipe, motor control
Procedia PDF Downloads 7225 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 281224 Tourist Behavior Towards Blockchain-Based Payments
Authors: A. Šapkauskienė, A. Mačerinskienė, R. Andrulienė, R. Bruzgė, S. Masteika, K. Driaunys
Abstract:
The COVID-19 pandemic has affected not only world markets and economies but also the daily lives of customers and their payment habits. The pandemic has accelerated the digital transformation, so the role of technology will become even more important post-COVID. Although the popularity of cryptocurrencies has reached unprecedented heights, there are still obstacles, such as a lack of consumer experience and distrust of these technologies, so exploring the role of cryptocurrency and blockchain in the context of international travel becomes extremely important. Research on tourists’ intentions to use cryptocurrencies for payment purposes is limited due to the small number of research studies. To fill this research gap, an exploratory study based on the analysis of survey data was conducted. The purpose of the research is to explore how the behavior of tourists has changed making their financial transactions when paying for the tourism services in order to determine the intention to pay in cryptocurrencies. Behavioral intention can be examined as a dependent variable that is useful for the study of the acceptance of blockchain as cutting-edge technology. Therefore, this study examines the intention of travelers to use cryptocurrencies in electronic payments for tourism services. Several studies have shown that the intention to accept payments in a cryptocurrency is affected by the perceived usefulness of these payments and the perceived ease of use. The findings deepen our understanding of the readiness of service users to apply for blockchain-based payment in the tourism sector. The tourism industry has to focus not only on the technology but on consumers who can use cryptocurrencies, creating new possibilities and increasing business competitiveness. Based on research results, suggestions are made to guide future research on the use of cryptocurrencies by tourists in the tourism industry. Therefore, in line with the rapid expansion of virtual currency users, market capitalization, and payment in cryptographic currencies, it is necessary to explore the possibilities of implementing a blockchain-based system aiming to promote the use of services in the tourism sector as the most affected by the pandemic.Keywords: behavioral intention, blockchain-based payment, cryptocurrency, tourism
Procedia PDF Downloads 106223 Ex-vivo Bio-distribution Studies of a Potential Lung Perfusion Agent
Authors: Shabnam Sarwar, Franck Lacoeuille, Nadia Withofs, Roland Hustinx
Abstract:
After the development of a potential surrogate of MAA, and its successful application for the diagnosis of pulmonary embolism in artificially embolized rats’ lungs, this microparticulate system were radiolabelled with gallium-68 to synthesize 68Ga-SBMP with high radiochemical purity >99%. As a prerequisite step of clinical trials, 68Ga- labelled starch based microparticles (SBMP) were analysed for their in-vivo behavior in small animals. The purpose of the presented work includes the ex-vivo biodistribution studies of 68Ga-SBMP in order to assess the activity uptake in target organs with respect to time, excretion pathways of the radiopharmaceutical, %ID/g in major organs, T/NT ratios, in-vivo stability of the radiotracer and subsequently the microparticles in the target organs. Radiolabelling of starch based microparticles was performed by incubating it with 68Ga generator eluate (430±26 MBq) at room temperature and pressure without using any harsh reaction condition. For Ex-vivo biodistribution studies healthy White Wistar rats weighing between 345-460 g were injected intravenously 68Ga-SBMP 20±8 MBq, containing about 2,00,000-6,00,000 SBMP particles in a volume of 700µL. The rats were euthanized at predefined time intervals (5min, 30min, 60min and 120min) and their organ parts were cut, washed, and put in the pre-weighed tubes and measured for radioactivity counts through automatic Gamma counter. The 68Ga-SBMP produced >99% RCP just after 10-20 min incubation through a simple and robust procedure. Biodistribution of 68Ga-SBMP showed that initially just after 5 min post injection major uptake was observed in the lungs following by blood, heart, liver, kidneys, bladder, urine, spleen, stomach, small intestine, colon, skin and skeleton, thymus and at last the smallest activity was found in brain. Radioactivity counts stayed stable in lungs with gradual decrease with the passage of time, and after 2h post injection, almost half of the activity were seen in lungs. This is a sufficient time to perform PET/CT lungs scanning in humans while activity in the liver, spleen, gut and urinary system decreased with time. The results showed that urinary system is the excretion pathways instead of hepatobiliary excretion. There was a high value of T/NT ratios which suggest fine tune images for PET/CT lung perfusion studies henceforth further pre-clinical studies and then clinical trials should be planned in order to utilize this potential lung perfusion agent.Keywords: starch based microparticles, gallium-68, biodistribution, target organs, excretion pathways
Procedia PDF Downloads 177222 Knowledge Sharing Practices in the Healthcare Sector: Evidences from Primary Health Care Organizations in Indonesia
Authors: Galih Imaduddin
Abstract:
Knowledge has been viewed as one of the most important resources in organizations, including those that operate in the healthcare sector. On that basis, Knowledge Management (KM) is crucial for healthcare organizations to improve their productivity and ensure effective utilization of their resources. Despite the growing interests to understand how KM might work for healthcare organizations, there is only a modest amount of empirical inquiries which have specifically focused on the tools and initiatives to share knowledge. Hence, the main purpose of this paper is to investigate the way healthcare organizations, particularly public sector ones, utilize knowledge sharing tools and initiatives for the benefit of patient-care. Employing a qualitative method, 13 (thirteen) Community Health Centers (CHCs) from a high-performing district health setting in Indonesia were observed. Data collection and analysis involved a repetition of document retrievals and interviews (n=41) with multidisciplinary health professionals who work in these CHCs. A single case study was cultivated reflecting on the means that were used to share knowledge, along with the factors that inhibited the exchange of knowledge among those health professionals. The study discovers that all of the thirteen CHCs exhibited and applied knowledge sharing means which included knowledge documents, virtual communication channels (i.e. emails and chatting applications), and social learning forums such as staff meetings, morning briefings, and communities of practices. However, the intensity of utilization was different among these CHCs, in which organizational culture, leadership, professional boundaries, and employees’ technological aptitude were presumed to be the factors that inhibit knowledge sharing processes. Making a distance with the KM literature of other sectors, this study denounces the primacy of technology-based tools, suggesting that socially-based initiatives could be more reliable for sharing knowledge. This suggestion is largely due to the nature of healthcare work which is still predominantly based on the tacit form of knowledge.Keywords: knowledge management, knowledge sharing, knowledge sharing tools and initiatives, knowledge sharing inhibitors, primary health care organizations
Procedia PDF Downloads 244221 Comparison of Medical Students Evaluation by Serious Games and Clinical Case-Multiple Choice Questions
Authors: Chamtouri I., Kechida M.
Abstract:
Background: Evaluation has a prominent role in medical education and graduation. This evaluation has usually done in face-to-face, by written or oral questions. Simulation is increasingly taking a part as a method of evaluation. Due to the Covid-19 pandemic, which disrupted face-to-face evaluation, simulation using serious games (SG) is emerging in the field of training and assessment of medical students. The aim of our study is to compare the results of the evaluation of medical students by virtual simulation by online serious games versus clinical case-multiple choice questions (MCQ) and to assess the degree of satisfaction from these two evaluation methods. Methods: Medical students from the same study level were voluntarily participated in this study. Groupe 1 had an evaluation by SG dealing with “diagnosis and management of ST-segment elevationmyocardialinfarction (STEMI)alreadyprepared on the website www.Mediactiv.com. Groupe 2 were evaluated by clinical case-MCQ having thes same topic as SG. Results of the two groups were compared. Satisfaction questionnaire was filled by the two groups. Satisfaction degree was compared between the two groups. Results. In this study, 64 medical students (G1:31 and G2: 33) were enrolled. Obtaining complete notes in the "questioning" and "clinical examination" parts is significantly more important in-group 1 compared to group 2. No significant difference detected between the two groups in terms of “ECG interpretation” and “diagnosis of STEMI” parts. A greater number of students of group 1 obtained the full note compared to group 2 in “the initial treatment part” (54.8% vs. 39.4%; p = 0.04). Thirty learners (96.8%) in-group 1 obtained a total score ≥ 50% versus 69.7% in-group 2 (p = 0.004). The full score of 100% was obtained in three learners in-group1, while no student scored 100% in-group2 (p = 0.027). Medical evaluation using SG was reported as more innovative, fun, and realistic compared to evaluation by clinical case-MCQ. No significant difference detected between the two methods in terms of stress. Conclusion: Simulation by SG can be considered as an innovative and effective method in evaluating medical students with a higher degree of satisfaction.Keywords: evaluation, serious games, medical students, satisfaction
Procedia PDF Downloads 142220 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 178219 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design
Authors: Ling Liyun
Abstract:
In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 136218 (De)Criminalising Sex Toys in Thailand: A Law and Economics Approach
Authors: Piyanee Khumpao
Abstract:
Under the Thai Penal Code and Customs Act, sex toys are criminalized and completely prohibited through the legal interpretation as obscene objects by law enforcement, despite there is no explicit legal sanction against them. The purpose of preventing people from accessing sex toys is to preserve public morals. However, sex toys are still available, exposed, and sold publicly in main cities throughout Thailand. They are easily observed by people of any age. This paper argues that sexuality is human nature and human right. Human deserves sexual pleasure as long as getting sexual pleasure does not inflict any harm on others. Using sex toys in private (individually and/or as a couple with mutual consent) does not constitute any harm nor degrade public moral. Therefore, the complete ban of sex toys shall be lifted and decriminalized. Nevertheless, the economic analysis illustrates that criminalization and prohibition of sex toys would lead to its black market – higher price and lower quantity. Although it is socially desirable to have fewer sex toys in the market, there will usually be high demand for them because sexual pleasure is natural and, hence, people have a lower price elasticity of demand for such things, including pornography. Thus, its deterrent effect is not very effective. Moreover, sex toys vendors still always exist because higher price incentivizes them to act illegally and may gain benefits from selling low-quality sex toys. Consequently, consumers do not have a choice to select high-quality sex toys at a reasonable price. Then, they are forced to purchase low quality sex toys at a higher price. They also may suffer from health issues as well as other harms from its dangerous/toxic substances since lower quality products are manufactured poorly to save costs. A law and economics approach supports the decriminalization of sex toys in Thailand. Other measures to control its availability shall be adopted to protect the vulnerable, such as children. Options are i) zoning or regulation on-premises selling sex toys as in Singapore, Japan, and China, ii) regulations of sex toys as medical apparatus like in the state of Alabama, and iii) the prevention of sex toys exposure in the real (physical) appearance (i.e., allowing virtual exposure of sex toys) like in India.Keywords: human nature, law and economics approach, sex toys, sexual pleasure
Procedia PDF Downloads 128217 Developing Family-Based Eco-Citizenship with Social Media: A Mixed Methods Collective Case Study of Families Looking to Adopt Ecologically Responsible Actions Using Facebook
Authors: Michel T. Leger, Shawn Martin
Abstract:
Leading an ecologically responsible lifestyle represents a difficult challenge. Though research in environmental education does point to an increase in the intention to act more responsibly towards the environment, this intent does not seem to translate to concrete ecological action. This mixed methods collective case study explores the adoption of ecological actions in the family, a context of socio-ecological transformation rarely examined in the scientific literature. More specifically, it takes into account the popular use of social media today to explore the potential role social media, namely Facebook, in promoting environmental action. In other words, for families who are intent on adopting an ecologically friendly lifestyle, could the use of Facebook positively affect the way family members relate to the environment and bring about real change in their daily household actions? To answer this question, twenty-one families living in an urban setting were recruited and then divided them into two distinct groups. The first group of families attempted to lower their household electrical bill as part of a private Facebook group, while the other aimed to do the same, but without the directed use of social media. For both groups, we recorded the amount of kilowatt-hours used during the project as well as the amount used for the same months the previous year, adjusting for temperature variations. Exit interviews were also conducted with each family in order to try to understand the processes of eco-citizenship development in the context of family. Results seem to suggest that both virtual social networks and one-on-one support can help to increase environmental awareness in participating family. Interestingly, families from the Facebook group seemed to demonstrate a higher degree of environmental engagement, and younger family members in this group were more active in the processes of collective behavioral change.Keywords: environmental education, family-based eco-citizenship, social media, case study
Procedia PDF Downloads 153216 Severe Post Operative Gas Gangrene of the Liver: Off-Label Treatment by Percutaneous Radiofrequency Ablation
Authors: Luciano Tarantino
Abstract:
Gas gangrene is a rare, severe infection with a very high mortality rate caused by Clostridium species. The infection causes a non-suppurative localized producing gas lesion from which harmful toxins that impair the inflammatory response cause vessel damage and multiple organ failure. Gas gangrene of the liver is very rare and develops suddenly, often as a complication of abdominal surgery and liver transplantation. The present paper deals with a case of gas gangrene of the liver that occurred after percutaneous MW ablation of hepatocellular carcinoma, resulting in progressive liver necrosis and multi-organ failure in spite of specific antibiotics administration. The patient was successfully treated with percutaneous Radiofrequency ablation. Case report: Female, 76 years old, Child A class cirrhosis, treated with synchronous insertion of 3 MW antennae for large HCC (5.5 cm) in the VIII segment. 24 hours after treatment, the patient was asymptomatic and left the hospital . 2 days later, she complained of fever, weakness, abdominal swelling, and pain. Abdominal US detected a 2.3 cm in size gas-containing area, eccentric within the large (7 cm) ablated area. The patient was promptly hospitalized with the diagnosis of anaerobic liver abscess and started antibiotic therapy with Imipenem/cilastatine+metronidazole+teicoplanine. On the fourth day, the patient was moved to the ICU because of dyspnea, congestive heart failure, atrial fibrillation, right pleural effusion, ascites, and renal failure. Blood tests demonstrated severe leukopenia and neutropenia, anemia, increased creatinine and blood nitrogen, high-level FDP, and high INR. Blood cultures were negative. At US, unenhanced CT, and CEUS, a progressive enlargement of the infected liver lesion was observed. Percutaneous drainage was attempted, but only drops of non-suppurative brownish material could be obtained. Pleural and peritoneal drainages gave serosanguineous muddy fluid. The Surgeon and the Anesthesiologist excluded any indication of surgical resection because of the high perioperative mortality risk. Therefore, we asked for the informed consent of the patient and her relatives to treat the gangrenous liver lesion by percutaneous Ablation. Under conscious sedation, percutaneous RFA of GG was performed by double insertion of 3 cool-tip needles (Covidien LDT, USA ) into the infected area. The procedure was well tolerated by the patient. A dramatic improvement in the patient's condition was observed in the subsequent 24 hours and thereafter. Fever and dyspnea disappeared. Normalization of blood tests, including creatinine, was observed within 4 days. Heart performance improved, 10 days after the RFA the patient left the hospital and was followed-up with weekly as an outpatient for 2 months and every two months thereafter. At 18 months follow-up, the patient is well compensated (Child-Pugh class B7), without any peritoneal or pleural effusion and without any HCC recurrence at imaging (US every 3 months, CT every 6 months). Percutaneous RFA could be a valuable therapy of focal GG of the liver in patients non-responder to antibiotics and when surgery and liver transplantation are not feasible. A fast and early indication is needed in case of rapid worsening of patient's conditions.Keywords: liver tumor ablation, interventional ultrasound, liver infection, gas gangrene, radiofrequency ablation
Procedia PDF Downloads 81215 NanoSat MO Framework: Simulating a Constellation of Satellites with Docker Containers
Authors: César Coelho, Nikolai Wiegand
Abstract:
The advancement of nanosatellite technology has opened new avenues for cost-effective and faster space missions. The NanoSat MO Framework (NMF) from the European Space Agency (ESA) provides a modular and simpler approach to the development of flight software and operations of small satellites. This paper presents a methodology using the NMF together with Docker for simulating constellations of satellites. By leveraging Docker containers, the software environment of individual satellites can be easily replicated within a simulated constellation. This containerized approach allows for rapid deployment, isolation, and management of satellite instances, facilitating comprehensive testing and development in a controlled setting. By integrating the NMF lightweight simulator in the container, a comprehensive simulation environment was achieved. A significant advantage of using Docker containers is their inherent scalability, enabling the simulation of hundreds or even thousands of satellites with minimal overhead. Docker's lightweight nature ensures efficient resource utilization, allowing for deployment on a single host or across a cluster of hosts. This capability is crucial for large-scale simulations, such as in the case of mega-constellations, where multiple traditional virtual machines would be impractical due to their higher resource demands. This ability for easy horizontal scaling based on the number of simulated satellites provides tremendous flexibility to different mission scenarios. Our results demonstrate that leveraging Docker containers with the NanoSat MO Framework provides a highly efficient and scalable solution for simulating satellite constellations, offering not only significant benefits in terms of resource utilization and operational flexibility but also enabling testing and validation of ground software for constellations. The findings underscore the importance of taking advantage of already existing technologies in computer science to create new solutions for future satellite constellations in space.Keywords: containerization, docker containers, NanoSat MO framework, satellite constellation simulation, scalability, small satellites
Procedia PDF Downloads 52214 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid
Procedia PDF Downloads 16