Search results for: solar photovoltaic module
657 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission
Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan
Abstract:
As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster
Procedia PDF Downloads 208656 Study of Changes in the Pulsation Period of Six Cepheid Variables
Authors: Mohamed Abdel Sabour, Mohamed Nouh, Ian Stevans, Essam Elkholy
Abstract:
We study the period change of six Cepheids using 19376 accurate flux observations of the Solar Mass Ejection Imager (SMEI) onboard the Coriolis spacecraft. All observations for the six Cepheids have been derived as templates for each star, independent of the specific sites utilized to establish and update the O-C values. Sometimes, sinusoidal patterns are superimposed on the star's O-C changes, which cannot be regarded as random fluctuations in the pulsation period. Random period changes were detected and computed using Eddington's and Plakidis's approaches. A comparison of the observed and predicted period change reveals a good agreement with some published models and a very substantial divergence with others. Between the reported period change and that estimated by the current technique, a linear fit with a correlation coefficient of 90.08 percent was obtained. The temporal rate of period change in Cepheid stars might be connected to how well these stars' mass losses are known today.Keywords: cepheids, period change, mass loss, O-C changes, period change, mass loss, O-C
Procedia PDF Downloads 41655 Machine Learning Based Smart Beehive Monitoring System Without Internet
Authors: Esra Ece Var
Abstract:
Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture
Procedia PDF Downloads 239654 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction
Authors: Jinsong Zhao, Lin Zhao
Abstract:
Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy
Procedia PDF Downloads 40653 When Women Take the Lead: Exploring the Intersection Between Gender Equality and Women’s Environmental Political Engagement from a Comparative Perspective
Authors: Summer Isaacson
Abstract:
Research on gender differences in environmental behavior has long claimed that women engage less than men in environmental political participation (EPP) (protests, petitions), despite their higher levels of environmental concern and vulnerability. Using recent data from the ISSP’s 2020 Environment module including 28 countries, we revisit the gender gap in EPP. Arguing that increasing gender equality and socio-economic development can allow women to voice their environmental grievances, we use multi-level models to examine the effects of macro-level gender equality on gender differences in environmental protests, petitions, and boycotts. By distinguishing individual from collective and non-confrontational from confrontational engagement forms, this study offers an encompassing understanding of gendered patterns of participation. Women do participate more than men, but mainly in individual and non-confrontational EPP forms (petitions, boycotts) and with substantial variation across countries. Moreover, considering how women have historically been restrained from participating in politics, we argue that structural gender inequality remains an important limitation to women’s engagement. Cross-level interactions indicate that in more egalitarian countries, women are more likely to engage in several types of EPP than men. The study offers new perspectives and findings on gender differences in EPP, highlighting the impact of gender inequality on women’s participation.Keywords: environmental activism, political participation, gender equality, pro-environmental behavior
Procedia PDF Downloads 64652 GPRS Based Automatic Metering System
Authors: Constant Akama, Frank Kulor, Frederick Agyemang
Abstract:
All over the world, due to increasing population, electric power distribution companies are looking for more efficient ways of reading electricity meters. In Ghana, the prepaid metering system was introduced in 2007 to replace the manual system of reading which was fraught with inefficiencies. However, the prepaid system in Ghana is not capable of integration with online systems such as e-commerce platforms and remote monitoring systems. In this paper, we present a design framework for an automatic metering system that can be integrated with e-commerce platforms and remote monitoring systems. The meter was designed using ADE 7755 which reads the energy consumption and the reading is processed by a microcontroller connected to Sim900 General Packet Radio Service module containing a GSM chip provisioned with an Access Point Name. The system also has a billing server and a management server located at the premises of the utility company which communicate with the meter over a Virtual Private Network and GPRS. With this system, customers can buy credit online and the credit will be transferred securely to the meter. Also, when a fault is reported, the utility company can log into the meter remotely through the management server to troubleshoot the problem.Keywords: access point name, general packet radio service, GSM, virtual private network
Procedia PDF Downloads 299651 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height
Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi
Abstract:
Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.Keywords: heliostat, solar tower power, wind loads simulation, South Algeria
Procedia PDF Downloads 561650 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load
Authors: M. Khoukhi
Abstract:
Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.Keywords: operating temperature, polystyrene insulation, thermal conductivity, cooling load
Procedia PDF Downloads 377649 Individual Differences and Language Learning Strategies
Authors: Nilgun Karatas, Bihter Sakin
Abstract:
In this study, the relationships between the use of language learning strategies and English language exit exam success were investigated in the university EFL learners’ context. The study was conducted at Fatih University Prep School. To collect data 3 classes from the A1 module in English language classes completed a questionnaire known as the English Language Learning Strategy Inventory or ELLSI. The data for the present study were collected from the preparatory class students who are studying English as a second language at the School of Foreign Languages. The students were placed into four different levels of English, namely A1, A2, B1, and B2 level of English competency according to European Union Language Proficiency Standard, by means of their English placement test results. The Placement test was conveyed at the beginning of the spring semester in 2014-2015.The ELLSI consists of 30 strategy items which students are asked to rate from 1 (low frequency) to 5 (high frequency) according to how often they use them. The questionnaire and exit exam results were entered onto SPSS and analyzed for mean frequencies and statistical differences. Spearman and Pearson correlation were used in a detailed way. There were no statistically significant results between the frequency of strategy use and exit exam results. However, most questions correlate at a significant level with some of the questions.Keywords: individual differences, language learning strategies, Fatih University, English language
Procedia PDF Downloads 491648 2D Numerical Modeling for Induced Current Distribution in Soil under Lightning Impulse Discharge
Authors: Fawwaz Eniola Fajingbesi, Nur Shahida Midia, Elsheikh M. A. Elsheikh, Siti Hajar Yusoff
Abstract:
Empirical analysis of lightning related phenomena in real time is extremely dangerous due to the relatively high electric discharge involved. Hence, design and optimization of efficient grounding systems depending on real time empirical methods are impeded. Using numerical methods, the dynamics of complex systems could be modeled hence solved as sets of linear and non-linear systems . In this work, the induced current distribution as lightning strike traverses the soil have been numerically modeled in a 2D axial-symmetry and solved using finite element method (FEM) in COMSOL Multiphysics 5.2 AC/DC module. Stratified and non- stratified electrode system were considered in the solved model and soil conductivity (σ) varied between 10 – 58 mS/m. The result discussed therein were the electric field distribution, current distribution and soil ionization phenomena. It can be concluded that the electric field and current distribution is influenced by the injected electric potential and the non-linearity in soil conductivity. The result from numerical calculation also agrees with previously laboratory scale empirical results.Keywords: current distribution, grounding systems, lightning discharge, numerical model, soil conductivity, soil ionization
Procedia PDF Downloads 312647 The Influence of Collaboration on Individual Writing Quality: The Case of Iranian vs. Malaysian Freshers
Authors: Seyed Yasin Yazdi-Amirkhiz, Azirah Hashim
Abstract:
This study purported to comparatively investigate the influence of collaborative writing on the quality of individual writing of four female Iranian and four female Malaysian students. The first semester students at a private university in Malaysia, who were homogeneous in terms of age, gender, study discipline, and language proficiency, were divided into two Iranian and two Malaysian dyads. The dyads performed collaborative writing tasks for 15 sessions; after three consecutive collaborative writing sessions, each participant was asked to individually attempt a writing task. Both collaborative and individual writing tasks comprised isomorphic graphic prompts (IELTS Academic Module task 1). Writing quality of the five individually-produced texts during the study was scored in terms of task achievement (TA), cohesion/coherence (C/C), grammatical range/accuracy (GR/A), and lexical resources (LR). The findings indicated a hierarchy of development in TA and C/C among all the students, while LR showed minor improvement only among three of Malaysian students, and GR/A barely exhibited any progress among all the participants. Intermittent progressions and regressions were also discerned in the trajectory of their writing development. The findings are discussed in the light of the socio-cultural and emergentist perspectives, the typology of tasks used as well as the role of the participants’ level of language proficiency.Keywords: collaborative writing, writing quality, individual writing, collaboration
Procedia PDF Downloads 458646 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications
Authors: S. V. N. Pammi, Soon-Gil Yoon
Abstract:
In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics
Procedia PDF Downloads 308645 Smart Grid Simulator
Authors: Ursachi Andrei
Abstract:
The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.Keywords: smart grid, sustainable energy, applied science, renewable energy sources
Procedia PDF Downloads 348644 Societal Acceptance of Trombe Wall in Buildings in Mediterranean Region: A Case Cyprus
Authors: Soad Abokhamis Mousavi
Abstract:
The Trombe wall is an ancient technique that continues to serve as an effective feature of a passive solar system. However, in practice, architects and their clients are not opting for the Trombe wall because of the view of the Trombe wall on the facades of the buildings. Therefore, this study has two main goals, and one of the goals is to find out why the Trombe wall is not considered in the buildings in the Mediterranean region. And the second goal is to find a solution to facilitate the societal acceptance of the Trombe walls in buildings. To cover the goals, the present work attempts to develop and design a different Trombe Wall with different Materials and views in the facades of the buildings. A qualitative data method was used in this article. The qualitative method was developed based on observation and questionnaires with different clients and expert architects in the selected region. Results indicate that the view of the Trombe wall in the facade of buildings can be used with different designs in order to not affect the beauty of the buildings.Keywords: trombe wall, societal acceptance, building, energy efficacy
Procedia PDF Downloads 81643 Integrating and Evaluating Computational Thinking in an Undergraduate Marine Science Course
Authors: Dana Christensen
Abstract:
Undergraduate students, particularly in the environmental sciences, have difficulty displaying quantitative skills in their laboratory courses. Students spend time sampling in the field, often using new methods, and are expected to make sense of the data they collect. Computational thinking may be used to navigate these new experiences. We developed a curriculum for the marine science department at a small liberal arts college in the Northeastern United States based on previous computational thinking frameworks. This curriculum incorporates marine science data sets with specific objectives and topics selected by the faculty at the College. The curriculum was distributed to all students enrolled in introductory marine science classes as a mandatory module. Two pre-tests and post-tests will be used to quantitatively assess student progress on both content-based and computational principles. Student artifacts are being collected with each lesson to be coded for content-specific and computational-specific items in qualitative assessment. There is an overall gap in marine science education research, especially curricula that focus on computational thinking and associated quantitative assessment. The curricula itself, the assessments, and our results may be modified and applied to other environmental science courses due to the nature of the inquiry-based laboratory components that use quantitative skills to understand nature.Keywords: marine science, computational thinking, curriculum assessment, quantitative skills
Procedia PDF Downloads 59642 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment
Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello
Abstract:
For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.Keywords: electromagnetic stirring, induction heating, interface modeling, metal load
Procedia PDF Downloads 267641 Using Diagnostic Assessment as a Learning and Teaching Approach to Identify Learning Gaps at a Polytechnic
Authors: Vijayan Narayananayar
Abstract:
Identifying learning gaps is crucial in ensuring learners have the necessary knowledge and skills to succeed. The Learning and Teaching (L&T) approach requires tutors to identify gaps in knowledge and improvise learning activities to close them. One approach to identifying learning gaps is through diagnostic assessment, which uses well-structured questions and answer options. The paper focuses on the use of diagnostic assessment as a learning and teaching approach in a foundational module at a polytechnic. The study used diagnostic assessment over two semesters, including the COVID and post-COVID semesters, to identify gaps in learning. The design of the diagnostic activity, pedagogical intervention, and survey responses completed by learners were analyzed. Results showed that diagnostic assessment can be an effective tool for identifying learning gaps and designing interventions to address them. Additionally, the use of diagnostic assessment provides an opportunity for tutors to engage with learners on a one-to-one basis, tailoring teaching to individual needs. The paper also discusses the design of diagnostic questions and answer options, including characteristics that need to be considered in achieving the target of identifying learning gaps. The implications of using diagnostic assessment as a learning and teaching approach include bridging the gap between theory and practice, and ensuring learners are equipped with skills necessary for their future careers. This paper can be useful in helping educators and practitioners to incorporate diagnostic assessment into their L&T approach.Keywords: assessment, learning & teaching, diagnostic assessment, analytics
Procedia PDF Downloads 111640 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 261639 Development of an Automatic Monitoring System Based on the Open Architecture Concept
Authors: Andrii Biloshchytskyi, Serik Omirbayev, Alexandr Neftissov, Sapar Toxanov, Svitlana Biloshchytska, Adil Faizullin
Abstract:
Kazakhstan has adopted a carbon neutrality strategy until 2060. In accordance with this strategy, it is necessary to introduce various tools to maintain the environmental safety of the environment. The use of IoT, in combination with the characteristics and requirements of Kazakhstan's environmental legislation, makes it possible to develop a modern environmental monitoring system. The article proposes a solution for developing an example of an automated system for the continuous collection of data on the concentration of pollutants in the atmosphere based on an open architecture. The Audino-based device acts as a microcontroller. It should be noted that the transmission of measured values is carried out via an open wireless communication protocol. The architecture of the system, which was used to build a prototype based on sensors, an Arduino microcontroller, and a wireless data transmission module, is presented. The selection of elementary components may change depending on the requirements of the system; the introduction of new units is limited by the number of ports. The openness of solutions allows you to change the configuration depending on the conditions. The advantages of the solutions are openness, low cost, versatility and mobility. However, there is no comparison of the working processes of the proposed solution with traditional ones.Keywords: environmental monitoring, greenhouse gases emissions, environmental pollution, Industry 4.0, IoT, microcontroller, automated monitoring system.
Procedia PDF Downloads 48638 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.Keywords: Fuzzy logic, investment, policy, stock exchange index
Procedia PDF Downloads 238637 Adopting Precast Insulated Concrete Panels for Building Envelope in Hot Climate Zones
Authors: Mohammed Sherzad
Abstract:
The absorbedness of solar radiation within the concrete building is higher than other buildings type, especially in hot climate zones. However, one of the primary issues of architects and the owners in hot climate zones is the building’s exterior plastered and painted finishing which is commonly used are fading and peeling adding a high cost on maintenance. Case studies of different exterior finishing’ treatments used in vernacular and contemporary dwellings in the United Arab Emirates were surveyed. The traditional plastered façade treatment was more sustainable than new buildings. In addition, using precast concrete insulated sandwich panels with the exposed colored aggregate surface in contemporary designed dwellings sustained the extensive heat reducing the overall cost of maintenance and contributed aesthetically to the buildings’ envelope in addition to its thermal insulation property.Keywords: precast concrete panels, façade treatment, hot climate
Procedia PDF Downloads 132636 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.Keywords: decentralized systems, distributed generation, microgrids, renewable energy
Procedia PDF Downloads 133635 Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field
Authors: Brahim Mahfoud
Abstract:
A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.Keywords: magnetic field, manufacturing, silicon melt, thermocapillary
Procedia PDF Downloads 84634 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors
Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar
Abstract:
Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices
Procedia PDF Downloads 190633 Electrolysis Ship for Green Hydrogen Production and Possible Applications
Authors: Julian David Hunt, Andreas Nascimento
Abstract:
Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.Keywords: green hydrogen, electrolysis ship, renewable energies, seasonal variations
Procedia PDF Downloads 162632 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator
Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan
Abstract:
Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.Keywords: Cockcroft-Walton circuit, harmonics, ripple factor, HVDC generator
Procedia PDF Downloads 367631 Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance
Authors: R. Abd-Rahman, M. M. Isa, H. H. Goh
Abstract:
A compound parabolic concentrator (CPC) is a well known non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This is also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height, H=193.4mm with concentration ratio, C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using ray-tracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site.Keywords: compound parabolic trough concentrator, optical modelling, ray-tracing analysis, improved performance
Procedia PDF Downloads 462630 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts
Authors: Ewelina Grabowska, Martyna Marchelek
Abstract:
Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation
Procedia PDF Downloads 222629 Development of Advanced Linear Calibration Technique for Air Flow Sensing by Using CTA-Based Hot Wire Anemometry
Authors: Ming-Jong Tsai, T. M. Wu, R. C. Chu
Abstract:
The purpose of this study is to develop an Advanced linear calibration Technique for air flow sensing by using CTA-based Hot wire Anemometry. It contains a host PC with Human Machine Interface, a wind tunnel, a wind speed controller, an automatic data acquisition module, and nonlinear calibration model. To improve the fitting error by using single fitting polynomial, this study proposes a Multiple three-order Polynomial Fitting Method (MPFM) for fitting the non-linear output of a CTA-based Hot wire Anemometry. The CTA-based anemometer with built-in fitting parameters is installed in the wind tunnel, and the wind speed is controlled by the PC-based controller. The Hot-Wire anemometer's thermistor resistance change is converted into a voltage signal or temperature differences, and then sent to the PC through a DAQ card. After completion measurements of original signal, the Multiple polynomial mathematical coefficients can be automatically calculated, and then sent into the micro-processor in the Hot-Wire anemometer. Finally, the corrected Hot-Wire anemometer is verified for the linearity, the repeatability, error percentage, and the system outputs quality control reports.Keywords: flow rate sensing, hot wire, constant temperature anemometry (CTA), linear calibration, multiple three-order polynomial fitting method (MPFM), temperature compensation
Procedia PDF Downloads 416628 Teaching Gender and Language in the EFL Classroom in the Arab World: Algerian Students’ Awareness of Their Gender Identities from New Perspectives
Authors: Amina Babou
Abstract:
Gender and language is a moot and miscellaneous arena in the sphere of sociolinguistics, which has been proliferated so widely and rapidly in recent years. The dawn of research on gender and foreign language education was against the feminist researchers who allowed space for the bustling concourse of voices and perspectives in the arena of gender and language differences, in the early to the mid-1970. The objective of this scrutiny is to explore to what extent teaching gender and language in the English as a Foreign Language (EFL) classroom plays a pivotal role in learning language information and skills. And the gist of this paper is to investigate how EFL students in Algeria conflate their gender identities with the linguistic practices and scholastic expertise. To grapple with the full range of issues about the EFL students’ awareness about the negotiation of meanings in the classroom, we opt for observing, interviewing, and questioning later to check using ‘how-do-you do’ procedure. The analysis of the EFL classroom discourse, from five Algerian universities, reveals that speaking strategies such as the manners students make an abrupt topic shifts, respond spontaneously to the teacher, ask more questions, interrupt others to seize control of conversations and monopolize the speaking floor through denying what others have said, do not sit very lightly on 80.4% of female students’ shoulders. The data indicate that female students display the assertive style as a strategy of learning to subvert the norms of femininity, especially in the speaking module.Keywords: gender identities, EFL students, classroom discourse, linguistics
Procedia PDF Downloads 411