Search results for: hybrid LES-RANS simulations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3611

Search results for: hybrid LES-RANS simulations

1931 Contracting Strategies to Foster Industrial Symbiosis Implementation

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) deals with the exchange of waste materials, fatal energy and utilities as resources for production. While it brings environmental benefits from resource conservation its economic profitability is one of the main barriers to its implementation. I.S involves several actors with their own objectives and resources so that each actor must be satisfied by ex-ante arrangements to commit toward investments and transactions. Regarding I.S Transaction cost economics helps to identify hybrid forms of governance for transactions governance due to I.S projects specificities induced by the need for customization (asset specificity, non-homogeneity). Thus we propose a framework to analyze the best contractual practices tailored to address I.S specific risks that we identified as threefold (load profiles and quality mismatch, value fluctuations). Schemes from cooperative game theory and contracting management are integrated to analyze value flows between actors. Contractual guidelines are then proposed to address the identified risks and to split the value for a set of I.S archetypes drawn from actual experiences.

Keywords: contracts, economics, industrial symbiosis, risks

Procedia PDF Downloads 212
1930 A Time since of Injection Model for Hepatitis C Amongst People Who Inject Drugs

Authors: Nader Al-Rashidi, David Greenhalgh

Abstract:

Mathematical modelling techniques are now being used by health organizations worldwide to help understand the likely impact that intervention strategies treatment options and combinations of these have on the prevalence and incidence of hepatitis C virus (HCV) in the people who inject drugs (PWID) population. In this poster, we develop a deterministic, compartmental mathematical model to approximate the spread of the HCV in a PWID population that has been divided into two groups by time since onset of injection. The model assumes that after injection needles adopt the most infectious state of their previous state or that of the PWID who last injected with them. Using analytical techniques, we find that the model behaviour is determined by the basic reproductive number R₀, where R₀ = 1 is a critical threshold separating two different outcomes. The disease-free equilibrium is globally stable if R₀ ≤ 1 and unstable if R₀ > 1. Additionally, we make some simulations where have confirmed that the model tends to this endemic equilibrium value with realistic parameter values giving an HCV prevalence.

Keywords: hepatitis C, people who inject drugs, HCV, PWID

Procedia PDF Downloads 150
1929 A Content Analysis of Us Media Framing of Conflict: Effects on Global Journalism and Its Social Consequences

Authors: Lee Artz

Abstract:

This presentation outlines US media frames of recent interventions in Iraq, Afghanistan, and Syria and their impact on global media and public discourse. A content analysis of sources, descriptors, and contexts of leading US media (AP, New York Times, Fox News) finds that news coverage highlights terrorism, justifies military action, and downplays the human costs. These media frames that normalize intervention also omit coverage of the environmental consequences of war, with scant or no reporting on pollution, destruction and contamination of agricultural infrastructures and the difficulty of any environmentally sustainable recovery. A content analysis of leading European and Middle East media (Daily Mail, Le Monde, Deutsch Welle, Al Jazeera) indicates that they have adopted the same reporting practices, frames, and techniques resulting in a hybrid, yet homogeneous, increasingly global news environment that does a disservice to the public interest and democracy.

Keywords: conflict, environment, media framing, public interest

Procedia PDF Downloads 207
1928 Fuel Economy of Electrical Energy in the City Bus during Japanese Test Procedure

Authors: Piotr Kacejko, Lukasz Grabowski, Zdzislaw Kaminski

Abstract:

This paper discusses a model of fuel consumption and on-board electricity generation. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the on-board electricity generation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show that driving dynamics has an impact on a consumption of fuel to drive alternators.

Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, power generation

Procedia PDF Downloads 215
1927 Small Wind Turbine Hybrid System for Remote Application: Egyptian Case Study

Authors: M. A. Badr, A. N. Mohib, M. M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) system supplying a remote small gathering of six families using HOMER software package. The electrical energy is to cater for the basic needs for which the daily load pattern is estimated. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for two sites. Using HOMER software, the simulation results showed that W/D/B systems are economical for the assumed community sites as the price of generated electricity is about 0.308 $/kWh, without taking external benefits into considerations. W/D/B systems are more economical than W/B or diesel alone systems, as the COE is 0.86 $/kWh for W/B and 0.357 $/kWh for diesel alone.

Keywords: optimum energy systems, remote electrification, renewable energy, wind turbine systems

Procedia PDF Downloads 406
1926 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu

Abstract:

The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.

Keywords: free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution

Procedia PDF Downloads 179
1925 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 173
1924 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source

Authors: A. Elnady

Abstract:

This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.

Keywords: direct power control, PI controller, PD-PWM, and power control

Procedia PDF Downloads 242
1923 Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions

Authors: A. Kudrev

Abstract:

The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule.

Keywords: melting, Poly(A)-Poly(U), TMPyP4, Zn(X)TMPyP4

Procedia PDF Downloads 154
1922 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 311
1921 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods

Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla

Abstract:

Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.

Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range

Procedia PDF Downloads 114
1920 Exploiting Non-Uniform Utility of Computing: A Case Study

Authors: Arnab Sarkar, Michael Huang, Chuang Ren, Jun Li

Abstract:

The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact.

Keywords: approximate computing, landau damping, non uniform utility computing, particle-in-cell

Procedia PDF Downloads 261
1919 Solving Linear Systems Involved in Convex Programming Problems

Authors: Yixun Shi

Abstract:

Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.

Keywords: convex programming, interior point method, linear systems, vector division

Procedia PDF Downloads 404
1918 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland

Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski

Abstract:

Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.

Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics

Procedia PDF Downloads 404
1917 Experimental Study of Semitransparent and Opaque Photovoltaic Modules with and without Air Duct

Authors: Sanjay Agrawal, Trapti Varshney, G. N. Tiwari

Abstract:

In this paper, thermal modeling has been developed for photovoltaic PV modules, namely; Case A: semitransparent PV module without duct, Case B: semitransparent PV module with duct, Case C: opaque PV module without duct, Case D: opaque PV module with duct for Delhi, India climatic condition. MATLAB 7.0 software has been used to solve mathematical models of the proposed system. For validation of proposed system, the experimental study has also been carried out for all above four cases, and then comparative analysis of all different type of PV module has been presented. The hybrid PVT module air collectors presented in this study are self sustaining the system and can be used for the electricity generation in remote areas where access of electricity is not economical due to high transmission and distribution losses. It has been found that overall annual thermal energy and exergy gain of semitransparent PV module is higher by 11.6% and7.32% in summer condition and 16.39% and 18% in winter condition respectively as compared to opaque PV module considering same area (0.61 m2) of PV module.

Keywords: semitransparent PV module, overall exergy, overall thermal energy, opaque

Procedia PDF Downloads 445
1916 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft

Authors: Peyman Honarmandi, Mazen Alhirsh

Abstract:

Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.

Keywords: aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner

Procedia PDF Downloads 245
1915 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.

Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures

Procedia PDF Downloads 234
1914 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes

Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze

Abstract:

A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.

Keywords: decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation

Procedia PDF Downloads 313
1913 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 569
1912 Subarray Based Multiuser Massive MIMO Design Adopting Large Transmit and Receive Arrays

Authors: Tetsiki Taniguchi, Yoshio Karasawa

Abstract:

This paper describes a subarray based low computational design method of multiuser massive multiple input multiple output (MIMO) system. In our previous works, use of large array is assumed only in transmitter, but this study considers the case both of transmitter and receiver sides are equipped with large array antennas. For this aim, receive arrays are also divided into several subarrays, and the former proposed method is modified for the synthesis of a large array from subarrays in both ends. Through computer simulations, it is verified that the performance of the proposed method is degraded compared with the original approach, but it can achieve the improvement in the aspect of complexity, namely, significant reduction of the computational load to the practical level.

Keywords: large array, massive multiple input multiple output (MIMO), multiuser, singular value decomposition, subarray, zero forcing

Procedia PDF Downloads 406
1911 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 567
1910 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 505
1909 An Efficient Fundamental Matrix Estimation for Moving Object Detection

Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung

Abstract:

In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.

Keywords: corner detection, optical flow, epipolar geometry, RANSAC

Procedia PDF Downloads 410
1908 Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices

Authors: Brando Vagenende, Marie-Anne Guerry

Abstract:

For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4.

Keywords: eigenvalues of matrices, finite Markov chains, monotone matrices, nonnegative matrices, stochastic matrices

Procedia PDF Downloads 84
1907 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 464
1906 Selling Electric Vehicles: Experiences from Car Salesmen in Sweden

Authors: Jens Hagman, Jenny Janhager Stier, Ellen Olausson, Anne Y. Faxer, Ana Magazinius

Abstract:

Sweden has the second highest electric vehicle (plug-in hybrid and battery electric vehicle) sales per capita in Europe but in relation to sales of internal combustion engine electric vehicles sales are still minuscular (< 4%). Much research effort has been placed on various technical and user focused barriers and enablers for adoption of electric vehicles. Less effort has been placed on investigating the retail (dealership-customer) sales process of vehicles in general and electric vehicles in particular. Arguably, no one ought to be better informed about needs and desires of potential electric vehicle buyers than car salesmen, originating from their daily encounters with customers at the dealership. The aim of this paper is to explore the conditions of selling electric vehicle from a car salesmen’s perspective. This includes identifying barriers and enablers for electric vehicle sales originating from internal (dealership and brand) and external (customer, government) sources. In this interview study five car brands (manufacturers) that sell both electric and internal combustion engine vehicles have been investigated. A total of 15 semi-structured interviews have been conducted (three per brand, in rural and urban settings and at different dealerships). Initial analysis reveals several barriers and enablers, experienced by car salesmen, which influence electric vehicle sales. Examples of as reported by car salesmen identified barriers are: -Electric vehicles earn car salesmen less commission on average compared to internal combustion engine vehicles. -It takes more time to sell and deliver an electric vehicle than an internal combustion engine vehicle. -Current leasing contracts entails relatively low second-hand value estimations for electric vehicles and thus a high leasing fee, which negatively affects the attractiveness of electric vehicles for private consumers in particular. -High purchasing price discourages many consumers from considering electric vehicles. -The education and knowledge level of electric vehicles differs between car salesmen, which could affect their self-confidence in meeting well prepared and question prone electric vehicle buyers. Examples of identified enablers are: -Company car tax regulation promotes sales of electric vehicles; in particular, plug-in hybrid electric vehicles are sold extensively to companies (up to 95 % of sales). -Low operating cost of electric vehicles such as fuel and service is an advantage when understood by consumers. -The drive performance of electric vehicles (quick, silent and fun to drive) is attractive to consumers. -Environmental aspects are considered important for certain consumer groups. -Fast technological improvements, such as increased range are opening up a wider market for electric vehicles. -For one of the brands; attractive private lease campaigns have proved effective to promote sales. This paper gives insights of an important but often overlooked aspect for the diffusion of electric vehicles (and durable products in general); the interaction between car salesmen and customers at the critical acquiring moment. Extracted through interviews with multiple car salesmen. The results illuminate untapped potential for sellers (salesmen, dealerships and brands) to mitigating sales barriers and strengthening sales enablers and thus becoming a more important actor in the electric vehicle diffusion process.

Keywords: customer barriers, electric vehicle promotion, sales of electric vehicles, interviews with car salesmen

Procedia PDF Downloads 230
1905 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube

Authors: Mirza Popovac

Abstract:

This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.

Keywords: heat pump, vortex tube, CFD, natural refrigerant

Procedia PDF Downloads 145
1904 Performance Analysis of Curved U-Slot Patch Antenna with Enhanced Bandwidth and Isolation for Mimo Systems

Authors: Umesh Kumar, Arun Kumar Shukla, B. V. V. Ravindra Babu

Abstract:

The paper presents a compact tri band Curved U-Slot patch antenna with improved bandwidth and isolation characteristics. The proposed antenna excited by coaxial feed resonates at tri band of 2.8 GHz, 4.1 GHz and 5.7 GHz for VSWR ≤ 1.5 with an improved bandwidth of 99.7% and also for getting high gain antenna of 11.31 dB. A 2×2 MIMO is developed using the proposed antenna giving an excellent isolation of 28 dB between the two antennas. The simulation results of return loss, Mutual Coupling, Gain, VSWR, Surface Current Distribution and Electrical Distribution are presented. By keeping the substrate thickness constant over various dielectric constants, simulations were carried out using MATLAB® and HFSS (High Frequency Structure Simulator) software.

Keywords: performance analysis, curved U-slot patch, antenna with enhanced bandwidth, isolation for mimo systems

Procedia PDF Downloads 589
1903 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 528
1902 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability

Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong

Abstract:

The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.

Keywords: supply chain, facility location, weber problem, sustainability

Procedia PDF Downloads 105