Search results for: content- and task-based learning
10862 Motivation and Attitudes toward Learning English and German as Foreign Languages among Sudanese University Students
Authors: A. Ishag, E. Witruk, C. Altmayer
Abstract:
Motivation and attitudes are considered as hypothetical psychological constructs in explaining the process of second language learning. Gardner (1985) – who first systematically investigated the motivational factors in second language acquisition – found that L2 achievement is related not only to the individual learner’s linguistic aptitude or general intelligence but also to the learner’s motivation and interest in learning the target language. Traditionally language learning motivation can be divided into two types: integrative motivation – the desire to integrate oneself with the target culture; and instrumental motivation – the desire to learn a language in order to meet a specific language requirement such as for employment. One of the Gardner’s main ideas is that the integrative motivation plays an important role in second language acquisition. It is directly and positively related to second language achievement more than instrumental motivation. However, the significance of integrative motivation reflects a rather controversial set of findings. On the other hand, Students’ attitudes towards the target language, its speakers and the learning context may all play some part in explaining their success in learning a language. Accordingly, the present study aims at exploring the significance of motivational and attitudinal factors in learning foreign languages, namely English and German among Sudanese undergraduate students from a psycholinguistic and interdisciplinary perspective. The sample composed of 221 students from the English and German language departments respectively at the University of Khartoum in Sudan. The results indicate that English language’s learners are instrumentally motivated and that German language’s learners have positive attitudes towards the German language community and culture. Furthermore, there are statistical significant differences in the attitudes toward the two languages due to gender; where female students have more positive attitudes than their male counterparts. However, there are no differences along the variables of academic grade and study level. Finally, the reasons of studying the English or German language have also been indicated.Keywords: motivation and attitudes, foreign language learning, english language, german language
Procedia PDF Downloads 68310861 Virtual Reality Learning Environment in Embryology Education
Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani
Abstract:
Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.Keywords: virtual reality, student assessment, medical education, 3D, embryology
Procedia PDF Downloads 19110860 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 42910859 Research on the Effectiveness of Online Guided Case Teaching in Problem-Based Learning: A Preschool Special Education Course
Authors: Chen-Ya Juan
Abstract:
Problem-Based Learning uses vague questions to guide student thinking and enhance their self-learning and collaboration. Most teachers implement PBL in a physical classroom, where teachers can monitor and evaluate students’ learning progress and guide them to search resources for answers. However, the prevalence of the Covid-19 in the world had changed from physical teaching to distance teaching. This instruction used many cases and applied Problem-Based Learning combined on the distance teaching via the internet for college students. This study involved an experimental group with PBL and a control group without PBL. The teacher divided all students in PBL class into eight groups, and 7~8 students in each group. The teacher assigned different cases for each group of the PBL class. Three stages of instruction were developed, including background knowledge of Learning, case analysis, and solving problems for each case. This study used a quantitative research method, a two-sample t-test, to find a significant difference in groups with PBL and without PBL. Findings indicated that PBL incased the average score of special education knowledge. The average score was improved by 20.46% in the PBL group and 15.4% without PBL. Results didn’t show significant differences (0.589>0.05) in special education professional knowledge. However, the feedback of the PBL students implied learning more about the application, problem-solving skills, and critical thinking. PBL students were more likely to apply professional knowledge on the actual case, find questions, resources, and answers. Most of them understood the importance of collaboration, working as a team, and communicating with other team members. The suggestions of this study included that (a) different web-based teaching instruments influenced student’s Learning; (b) it is difficult to monitor online PBL progress; (c) online PBL should be implemented flexible and multi-oriented; (d) although PBL did not show a significant difference on the group with PBL and without PBL, it did increase student’s problem-solving skills and critical thinking.Keywords: problem-based learning, college students, distance learning, case analysis, problem-solving
Procedia PDF Downloads 13010858 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 7810857 Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition
Authors: Raheleh Khademian, Roghayeh Aminian
Abstract:
For the study of salinity stress on Vicia villosa and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect.Keywords: Vicia villossa, salinity stress, calcium, hydroponic
Procedia PDF Downloads 26410856 Non Immersive Virtual Laboratory Applied to Robotics Arms
Authors: Luis F. Recalde, Daniela A. Bastidas, Dayana E. Gallegos, Patricia N. Constante, Victor H. Andaluz
Abstract:
This article presents a non-immersive virtual lab-oratory to emulate the behavior of the Mitsubishi Melfa RV 2SDB robotic arm, allowing students and users to acquire skills and experience related to real robots, augmenting the access and learning of robotics in Universidad de las Fuerzas Armadas (ESPE). It was developed using the mathematical model of the robotic arm, thus defining the parameters for virtual recreation. The environment, interaction, and behavior of the robotic arm were developed in a graphic engine (Unity3D) to emulate learning tasks such as in a robotics laboratory. In the virtual system, four inputs were developed for the movement of the robot arm; further, to program the robot, a user interface was created where the user selects the trajectory such as point to point, line, arc, or circle. Finally, the hypothesis of the industrial robotic learning process is validated through the level of knowledge acquired after using the system.Keywords: virtual learning, robot arm, non-immersive reality, mathematical model
Procedia PDF Downloads 9910855 A Content Analysis of Us Media Framing of Conflict: Effects on Global Journalism and Its Social Consequences
Authors: Lee Artz
Abstract:
This presentation outlines US media frames of recent interventions in Iraq, Afghanistan, and Syria and their impact on global media and public discourse. A content analysis of sources, descriptors, and contexts of leading US media (AP, New York Times, Fox News) finds that news coverage highlights terrorism, justifies military action, and downplays the human costs. These media frames that normalize intervention also omit coverage of the environmental consequences of war, with scant or no reporting on pollution, destruction and contamination of agricultural infrastructures and the difficulty of any environmentally sustainable recovery. A content analysis of leading European and Middle East media (Daily Mail, Le Monde, Deutsch Welle, Al Jazeera) indicates that they have adopted the same reporting practices, frames, and techniques resulting in a hybrid, yet homogeneous, increasingly global news environment that does a disservice to the public interest and democracy.Keywords: conflict, environment, media framing, public interest
Procedia PDF Downloads 19910854 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia
Authors: Nathenal Thomas Lambamo
Abstract:
Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.Keywords: septoria, leaf rust, deep learning, CNN
Procedia PDF Downloads 7610853 Education for Social Justice: University Teachers’ Conceptions and Practice: A Comparative Study
Authors: Digby Warren, Jiri Kropac
Abstract:
While aspirations of social justice are often articulated by universities as a “feel good” mantra, what is meant by education for social justice deserves deeper consideration. Based on in-depth interviews with academics (voluntary participants in this research) in different disciplines and institutions in the UK, Czech Republic, and other EU countries, this comparative study presents thematic findings regarding lecturers’ conceptions of education for social justice -what it is, why it is important, why they are personally committed to it, how it connects with their own values- and their practice of it- how it is implemented through curriculum content, teaching and learning activities, and assessment tasks. It concludes by presenting an analysis of the challenges, constraints, and enabling factors in practising social justice education in different subject, institutional and national contexts.Keywords: higher education, social justice, inclusivity, diversity
Procedia PDF Downloads 12610852 Quality Teaching Evaluation Instrument: A Student Learning-centred Approach
Authors: Thuy T. T. Tran, Hamish Coates, Sophie Arkoudis
Abstract:
Evaluation instruments of teaching are abundant; however, these do not prompt any enhancement in the quality of teaching, not least because these instruments are framed only by teacher-centered conceptions of teaching. There is a need for more sophisticated teaching evaluation measures that focus on student learning and multi-stakeholder involvement. This study aims to develop such an evaluation instrument for Vietnamese higher education. The study uses several kinds of methods. The instrument was initially drafted through in-depth review of research, paying close attention to Vietnamese higher education. Draft evaluation instruments were produced and reviewed by 34 experts. The outcomes of this qualitative and quantitative data reveal an instrument that highlights the value of a multisource student-centered approach, and the rich integration of contextual and cultural traits where Confucian values are emphasized. The validation affirms that evaluating teaching in such way will facilitate the continuous learning growth of all stakeholders involved.Keywords: multi stakeholders, quality teaching, student learning, teaching evaluation
Procedia PDF Downloads 31010851 Using Lesson-Based Discussion to Improve Teaching Quality: A Case of Chinese Mathematics Teachers
Authors: Jian Wang
Abstract:
Teachers’ lesson-based discussions presume central to their effective learning to teach. Whether and to what extent such discussions offer opportunities for teachers to learn to teach effectively is worth a careful empirical examination. This study examines this assumption by drawing on lesson-based discussions and relevant curriculum materials from Chinese teachers in three urban schools. Their lesson-based discussions consistently focused on pedagogical content knowledge and offered specific and reasoned suggestions for teachers to refine their teaching practices. The mandated curriculum and their working language-mediated their lesson-based discussions.Keywords: Chinese teachers, curriculum materials, lesson discussion, mathematics instruction
Procedia PDF Downloads 8010850 School-Outreach Projects to Children: Lessons for Engineering Education from Questioning Young Minds
Authors: Niall J. English
Abstract:
Under- and post-graduate training can benefit from a more active learning style, and most particularly so in engineering. Despite this, outreach to young children in primary and secondary schools is less-developed in terms of its documented effectiveness, especially given new emphasis placed within the third level and advanced research program’s on Education and Public Engagement (EPE). Bearing this in mind, outreach and school visits form the basis to ascertain how active learning, careers stimulus and EPE initiatives for young children can inform the university sector, helping to improve future engineering-teaching standards, and enhancing both quality and practicalities of the teaching-and-learning experience. Indeed, engineering-education EPE/outreach work has been demonstrated to lead to several tangible benefits and improved outcomes, such as greater engagement and interest with science/engineering for school-children, careers awareness, enabling teachers with strong contributions to technical knowledge of engineering subjects, and providing development of general professional skills for engineering, e.g., communication and teamwork. This intervention involved active learning in ‘buzz’ groups for young children of concepts in gas engineering, observing their peer interactions to develop university-level lessons on activity learning. In addition, at the secondary level, careers-outreach efforts have led to statistical determinations of motivations towards engineering education and training, which aids in the redesign of engineering curricula for more active learning.Keywords: outreach, education and public engagement, careers, peer interactions
Procedia PDF Downloads 12010849 Preliminary Investigation into the Potentials of Mixed Blend of Acha (Digitaria exiles), Aya (Cyperus esculenta) and Defatted Water Melon Seed (Citrullis lanatus) Flour as a Weaning Formula
Authors: O. G. Onuoha, O. G. Akagu
Abstract:
The potentials of acha (Digitaria exiles), aya (Cyperus esculentus) and defatted water melon seed (Citrullis lanatus) as a weaning formula was investigated using the following blends for acha, aya and defatted water melon seed respectively in percentage proportion to obtain the weaning formulae; WS1(20:50:30); WS2(30:40:30); WS3(40:30:30); WS4(50:20:30). The result of the chemical analysis showed that; the sample WS1 had the highest value (15.6%) for protein while sample WS4 had the least value (14.1%). The fat content sample WS4 having the highest value (30.8%) while sample WS1 had the least value (27.3%). The ash content sample WS4 had the highest value (3.22%) while sample WS1 had the least value (2.63%). The carbohydrate content showed that sample WS1 having the highest value (50.5%) while sample WS4 had the least value (46.58%). While sample WS4 had the highest energy value (528.32 Kcal) and sample WS2 had the least value (515.06 Kcal). However, all the sample results fell within the dietary daily reference intake for infants between 0-3 years and required only local technology in its production.Keywords: weaning formula, acha, aya, deffted water melon seed
Procedia PDF Downloads 27010848 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times
Authors: M. Duran Toksari, Berrin Ucarkus
Abstract:
In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150-jobs problems. The proposed algorithms can find the same results in shorter time.Keywords: delivery Times, learning effect, makespan, scheduling, total completion time
Procedia PDF Downloads 46910847 Desk Graffiti as Art, Archive or Collective Knowledge Sharing: A Case Study of Schools in Addis Ababa, Ethiopia
Authors: Behailu Bezabih Ayele
Abstract:
Illustrative expressions in art education and in overall learning are being given increasing attention in the transmission of knowledge. The objective of this paper, therefore, is to present an analysis of graffiti on school desks-a way of smuggling knowledge on the edge of classroom education and learning. The methodological approach focuses on the systematic collection and selection of desk graffiti. Four schools are chosen to reflect socioeconomic status and gender composition. The analysis focused on the categorization of graffiti by genre. This was followed by an analysis of the style, intensity as well as content of the messages in terms of overall social impacts. The paper grounds the analysis by reviewing the literature on modern education and art education in the Ethiopian context, as well as the place of desk graffiti. The findings generally show that the school desks and the school environment, by and large, have managed to serve as vessels through which formal and informal knowledge is acquired, transmitted, engrained into the students and transformed into messages by the students. The desks have also apparently served as a springboard to maximize the interfaces between several ideas and disciplines and communications. However, the very fact that the desks serve as massive channels of expression and knowledge transmission also points to a lack of breadth availability of channels of expression, perhaps confounding the ability of classrooms as means of outlet of expression and documentation for the students. This points to the need for efforts in education policy and funding of artistic endeavors for young students.Keywords: artistic expression, desk graffiti, education, school children, Ethiopia
Procedia PDF Downloads 6810846 Evaluating Imitation Behavior of Children with Autism Spectrum Disorder Using Humanoid Robot NAO
Authors: Masud Karim, Md. Solaiman Mia, Saifuddin Md. Tareeq, Md. Hasanuzzaman
Abstract:
Autism Spectrum Disorder (ASD) is a neurodevelopment disorder. Such disorder is found in childhood life. Children with ASD have less capabilities in communication and social skills. Therapies are used to develop communication and social skills. Recently researchers have been trying to use robots in such therapies. In this paper, we have presented social skill learning test cases for children with ASD. Autism conditions are measured in 30 children in a special school. Among them, twelve children are selected who have equal ASD conditions. Then six children participated in training with humans, and another six children participated in training with robots. The learning session continued for one week and three hours each day. We have taken an assessment test before the learning sessions. After completing the learning sessions, we have taken another assessment test. We have found better performances from children who have participated in robotic sessions rather than the children who have participated in human sessions.Keywords: children with ASD, NAO robot, human-robot interaction, social skills
Procedia PDF Downloads 8710845 The Role of Video in Teaching and Learning Pronunciation: A Case Study
Authors: Kafi Razzaq Ahmed
Abstract:
Speaking fluently in a second language requires vocabulary, grammar, and pronunciation skills. Teaching the English language entails teaching pronunciation. In professional literature, there have been a lot of attempts to integrate technology into improving the pronunciation of learners. The technique is also neglected in Kurdish contexts, Salahaddin University – Erbil included. Thus, the main aim of the research is to point out the efficiency of using video materials for both language teachers and learners within and beyond classroom learning and teaching environments to enhance student's pronunciation. To collect practical data, a research project has been designed. In subsequent research, a posttest will be administered after each lesson to 100 first-year students at Salahaddin University-Erbil English departments. All students will be taught the same material using different methods, one based on video materials and the other based on the traditional approach to teaching pronunciation. Finally, the results of both tests will be analyzed (also knowing the attitudes of both the teachers and the students about both lessons) to indicate the impact of using video in the process of teaching and learning pronunciation.Keywords: video, pronunciation, teaching, learning
Procedia PDF Downloads 10810844 Promoting Health and Academic Achievement: Mental Health Promoting Online Education
Authors: Natalie Frandsen
Abstract:
Pursuing post-secondary education is a milestone for many Canadian youths. This transition involves many changes and opportunities for growth. However, this may also be a period where challenges arise. Perhaps not surprisingly, mental health challenges for post-secondary students are common. This poses difficulties for students and instructors. Common mental-health-related symptoms (e.g., low motivation, fatigue, inability to concentrate) can affect academic performance, and instructors may need to provide accommodations for these students without the necessary expertise. ‘Distance education’ has been growing and gaining momentum in Canada for three decades. As a consequence of the COVID-19 pandemic, post-secondary institutions have been required to deliver courses using ‘remote’ methods (i.e., various online delivery modalities). The learning challenges and subsequent academic performance issues experienced by students with mental-health-related disabilities studying online are not well understood. However, we can postulate potential factors drawing from learning theories, the relationship between mental-health-related symptoms and academic performance, and learning design. Identifying barriers and opportunities to academic performance is an essential step in ensuring that students with mental-health-related disabilities are able to achieve their academic goals. Completing post-secondary education provides graduates with more employment opportunities. It is imperative that our post-secondary institutions take a holistic view of learning by providing learning and mental health support while reducing structural barriers. Health-promoting universities and colleges infuse health into their daily operations and academic mandates. Acknowledged in this Charter is the notion that all sectors must take an active role in favour of health, social justice, and equity for all. Drawing from mental health promotion and Universal Design for Learning (UDL) frameworks, relevant adult learning concepts, and critical digital pedagogy, considerations for mental-health-promoting, online learning community development will be summarized. The education sector has the opportunity to create and foster equitable and mental health-promoting learning environments. This is of particular importance during a global pandemic when the mental health of students is being disproportionately impacted.Keywords: academic performance, community, mental health promotion, online learning
Procedia PDF Downloads 13610843 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem
Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar
Abstract:
Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc
Procedia PDF Downloads 16110842 Anxiety Factors in the Saudi EFL Learners
Authors: Fariha Asif
Abstract:
The Saudi EFL learners face a number of problems in EFL learning, anxiety is the most potent one among those. It means that its resolution can lead to better language skills in Saudi students. That’s why, the study is carried out and is considered to be of interest to the Saudi language learners, educators and the policy makers because of the potentially negative impact that anxiety has on English language learning. The purpose of the study is to explore the factors that cause language anxiety in the Saudi EFL learners while learning speaking skills and the influence it casts on communication in the target language. The investigation of the anxiety-producing factors that arise while learning to communicate in the target language will hopefully broaden the insight into the issue of language anxiety and will help language teachers in making the classroom environment less stressful. The study seeks to answer the questions such as what are the psycholinguistic factors that cause language anxiety among ESL/EFL learners in learning and speaking English Language, especially in the context of the Saudi students. What are the socio-cultural factors that cause language anxiety among Saudi EFL learners in learning and speaking English Language? How is anxiety manifested in the language learning of the Saudi EFL learners? And which strategies can be used to successfully cope with language anxiety? The scope of the study is limited to the college and university English Teachers and subject specialists (males and females) in public sectors colleges and universities in Saudi Arabia. Some of the key findings of the study are:, Anxiety plays an important role in English as foreign language learning for the Saudi EFL learners. Some teachers believe that anxiety bears negatives effects for the learners, while some others think that anxiety serves a positive outcome for the learners by giving them an extra bit of motivation to do their best in English language learning. Language teachers seem to have consensus that L1 interference is one of the major factors that cause anxiety among the Saudi EFL learners. Most of the Saudi EFL learners are found to have fear of making mistakes. They don’t take initiative and opt to keep quiet and don’t respond fearing that they would make mistakes and this would ruin their image in front of their peers. Discouraging classroom environment is also counted as one of the major anxiety causing factors. The teachers, who don’t encourage learners positively, make them anxious and they start avoiding class participation. It is also found that English language teachers have their important role to minimize the negative effects of anxiety in the classes. The teachers’ positive encouragement can do wonders in this regard. A positive, motivating and encouraging class environment is essential to produce desired results in English language learning for the Saudi EFL learners.Keywords: factors, psychology, speaking, EFL
Procedia PDF Downloads 46510841 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 7510840 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology
Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando
Abstract:
Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry
Procedia PDF Downloads 15110839 A Textual Analysis of Prospective Teachers’ Social Justice Identity Development and LGBTQ Advocacy
Authors: Mi Ok Kang
Abstract:
This study examined the influences of including LGBTQ-related content in a multicultural teacher education course on the development of prospective teachers’ social justice identities. Appling a content analysis to 53 reflection texts written by participating prospective teachers in response to the relevant course content, this study deduced the stages of social justice identity development (naïve, acceptance, resistance, redefinition, and internalization) that participants reached during the course. The analysis demonstrated that the participants reached various stages in the social identity development model and none of the participants remained at the naïve stage during/after class. The majority (53%) of the participants reached the internalization stage during the coursework and became conscious about the heterosexual privileges they have had and aware of possible impacts of such privilege on their future LGBTQ students. Also the participants had begun to develop pedagogic action plans and devised applicable teaching strategies for their future students based on the new understanding of heteronormativity. We expect this study will benefit teacher educators and educational administrators who want to address LGBTQ-related issues in their multicultural education programs and/or revisit the goals, directions, and implications of their approach.Keywords: LGBTQ, heteronormativity, social justice identity, teacher education, multicultural education, content analysis
Procedia PDF Downloads 25810838 “Those Are the Things that We Need to be Talking About”: The Impact of Learning About the History of Racial Oppression during Ghana Study Abroad
Authors: Katarzyna Olcoń, Rose M. Pulliam, Dorie J. Gilbert
Abstract:
This article examines the impact of learning about the history of racial oppression on U.S. university students who participated in a Ghana study abroad which involved visiting the former slave dungeons. Relying on ethnographic observations, individual interviews, and written journals of 27 students (predominantly White and Latino/a and social work majors), we identified four themes: (1) the suffering and resilience of African and African descent people; (2) ‘it’s still happening today’; (3) ‘you don’t learn about that in school’; and (4) remembrance, equity, and healing.Keywords: racial oppression, anti-racism pedagogy, student learning, social work education, study abroad
Procedia PDF Downloads 11810837 Enhancement of Biomass and Bioactive Compounds in Kale Subjected to UV-A LED Lights
Authors: Jin-Hui Lee, Myung-Min Oh
Abstract:
The application of temporary abiotic stresses before crop harvest is a potential strategy to enhance phytochemical content. The objective of this study was to determine the effect of various UV-A LED lights on the growth and content of bioactive compounds in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were cultivated in a plant factory with artificial lighting (air temperature of 20℃, relative humidity of 60%, photosynthesis photon flux density (PPFD) of 125 µmol·m⁻²·s⁻¹) for 3 weeks. Kale plants were irradiated by four types of UV-A LEDs (peak wavelength; 365, 375, 385, and 395 nm) with 30 W/m² for 7 days. As a result, image chlorophyll fluorescence (Fv/Fm) value of kale leaves was lower as the UV-A LEDs peak wavelength was shorter. Fresh and dry weights of shoots and roots of kale plants were significantly higher in the plants under UV-A than the control at 7 days of treatment. In particular, the growth was significantly increased with a longer peak wavelength of the UV-A LEDs. The results of leaf area and specific leaf weight showed a similar pattern with those of growth characteristics. Chlorophyll content was highest in kale leaves subjected to UV-A LEDs with the peak wavelength of 395 nm at 3 days of treatment compared with the control. Total phenolic contents of UV-A LEDs with the peak wavelength of 395 nm at 5 and 6 days of treatment were 44% and 47% higher than those of the control, respectively. Antioxidant capacity showed almost the same pattern as the results of total phenol content. The activity of phenylalanine ammonia-lyase was approximately 11% and 8% higher in the UV-A LEDs with the peak wavelength of 395 nm compared to the control at 5 and 6 days of treatment, respectively. Our results imply that the UV-A LEDs with relative longer peak wavelength were effective to improve growth as well as the content of bioactive compounds of kale plants.Keywords: bioactive compounds, growth, Kale, UV-A LEDs
Procedia PDF Downloads 14210836 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance
Authors: Qura-tul-aain Khair
Abstract:
Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance
Procedia PDF Downloads 38210835 Applying Knowledge Management and Attitude Based on Holistic Approach in Learning Andragogy, as an Effort to Solve Environmental Problems after Mining Activities
Authors: Aloysius Hardoko, Susilo
Abstract:
The root cause of environmental damage post coal mining activities as determined by the province of East Kalimantan as a corridor of economic activity masterplan acceleration of economic development expansion (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest posttest group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post coal mining activity.Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental damage
Procedia PDF Downloads 24110834 Educational System in Developing Countries and E-learning Evaluation in the Face of COVID Pandemic
Authors: Timothy Wale Olaosebikan
Abstract:
The adverse effect of the Covid-19 outbreak and lock-downs on the world economy has coursed a major disrupt in mostly all sectors. The educational sector is not exempted from this disruption as it is one of the most affected sectors in the world. Similarly, most developing countries are still struggling to adopt/ adapt with the 21st-century advancement of technology, which includes e-learning/ e-education. Furthermore, one is left to wonder of the possibility of these countries surviving this disruption on their various educational systems that may no longer be business as usual after the Covid Pandemic era. This study evaluates the e-learning process of educational systems, especially in developing countries. The collection of data for the study was effected through the use of questionnaires with sampling drawn by stratified random sampling. The data was analyzed using descriptive and inferential statistics. The findings of the study show that about 30% of developing countries have fully adopted the e-learning system, about 45% of these countries are still struggling to upgrade while about 25% of these countries are yet to adopt the e-learning system of education. The study concludes that the sudden closure of educational institutions around the world during the Covid Pandemic period should facilitate a teaching pedagogy of e-learning and virtual delivery of courses and programmes in these developing countries. If this approach can be fully adopted, schools might have to grapple with the initial teething problems, given the sudden transition just in order to preserve the welfare of students. While progress should be made to transit as the case may be, lectures and seminars can be delivered through the web conferencing site-zoom. Interestingly, this can be done on a mobile phone. The demands of this approach would equally allow lecturers to make major changes to their work habits, uploading their teaching materials online, and get to grips with what online lecturing entails. Consequently, the study recommends that leaders of developing countries, regulatory authorities, and heads of educational institutions must adopt e-learning into their educational system. Also, e-learning should be adopted into the educational curriculum of students, especially from elementary school up to tertiary level. Total compliance to the e-learning system must be ensured on the part of both the institutions, stake holders, lecturers, tutors, and students. Finally, collaborations with developed countries and effective funding for e-learning integration must form the heart of their cardinal mission.Keywords: Covid pandemic, developing countries, educational system, e-learning
Procedia PDF Downloads 10210833 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 94