Search results for: vegetative filter strip modeling system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20704

Search results for: vegetative filter strip modeling system

19054 Approach of Measuring System Analyses for Automotive Part Manufacturing

Authors: S. Homrossukon, S. Sansureerungsigun

Abstract:

This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipment were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipment of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded.

Keywords: automotive part manufacturing measurement, measuring accuracy, measuring precision, measurement system analyses

Procedia PDF Downloads 295
19053 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 139
19052 Design of Cloud Service Brokerage System Intermediating Integrated Services in Multiple Cloud Environment

Authors: Dongjae Kang, Sokho Son, Jinmee Kim

Abstract:

Cloud service brokering is a new service paradigm that provides interoperability and portability of application across multiple Cloud providers. In this paper, we designed cloud service brokerage system, any broker, supporting integrated service provisioning and SLA based service life cycle management. For the system design, we introduce the system concept and whole architecture, details of main components and use cases of primary operations in the system. These features ease the Cloud service provider and customer’s concern and support new Cloud service open market to increase cloud service profit and prompt Cloud service echo system in cloud computing related area.

Keywords: cloud service brokerage, multiple Clouds, Integrated service provisioning, SLA, network service

Procedia PDF Downloads 471
19051 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 16
19050 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems

Authors: Brian J. Biroscak

Abstract:

In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.

Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling

Procedia PDF Downloads 60
19049 Control and Automation of Sensors in Metering System of Fluid

Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah

Abstract:

This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: communication, metering, computer, sensor

Procedia PDF Downloads 537
19048 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case

Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.

Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe

Procedia PDF Downloads 89
19047 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 485
19046 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda

Authors: Hussein Bizimana, Osman Sönmez

Abstract:

Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.

Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails

Procedia PDF Downloads 587
19045 The Extent of Big Data Analysis by the External Auditors

Authors: Iyad Ismail, Fathilatul Abdul Hamid

Abstract:

This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.

Keywords: big data analysis, external auditors, audit reliance, internal audit function

Procedia PDF Downloads 48
19044 IT System in the Food Supply Chain Safety, Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: food supply chain, IT system, safety, SME

Procedia PDF Downloads 456
19043 Ficus carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modeling and Optimization

Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia

Abstract:

Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and the illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that are considered potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria annually produces 131000 tons of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of a statistical method for modeling and to optimize the conditions of the phenol adsorption from agricultural by-products, locally available (fig leaves). The best experimental performance of phenol elimination on the adsorbent was obtained with: Adsorbent concentration (X₂) = 200 mg L⁻¹; Initial concentration (X₃) = 150 mg L⁻¹; Speed agitation (X₁) = 300 rpm.

Keywords: low-cost adsorbents, adsorption, fig leaves, phenol, factorial design

Procedia PDF Downloads 88
19042 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 269
19041 Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter

Authors: Harish Aryal

Abstract:

The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution.

Keywords: hodoscope, transient testing, collimators, MCNP, TREAT, hodogram, filters

Procedia PDF Downloads 58
19040 Development of a Vegetation Searching System

Authors: Rattanathip Rattanachai, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript, and MySQL database system and it was designed to support searching endemic and rare species of tree on web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.3 and 4.5, and standard deviation for experts and users were 0.61 and 0.73 respectively. Further analysis showed that the quality of plant searching web site was also at a good level as well.

Keywords: endemic species, vegetation, web-based system, black box testing, Thailand

Procedia PDF Downloads 295
19039 Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia

Authors: Ahmad Zaini, F. Muhammad Reza Hadafi, Surya Sumpeno, Muhtadin, Mochamad Hariadi

Abstract:

The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%.

Keywords: 3D reconstruction, light pattern structure, texture mapping, museum

Procedia PDF Downloads 446
19038 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application

Authors: S. Abdourraziq, M. A. Abdourraziq

Abstract:

One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.

Keywords: PV cell, converter, MPPT, MPP, PV pumping system

Procedia PDF Downloads 141
19037 Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation

Authors: Ammar Maziz, Mostapha Tarfaoui, Said Rechak

Abstract:

The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved.

Keywords: composite materials, low velocity impact, FEA, dynamic behavior, progressive damage modeling

Procedia PDF Downloads 151
19036 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 137
19035 Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies

Authors: Boris Kolev, Matt Kokan, Mohammad Deriszadeh, Farshid Bateni

Abstract:

Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations.

Keywords: deep excavations, lateral displacements, numerical modeling, shoring walls, tieback anchors

Procedia PDF Downloads 164
19034 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance

Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang

Abstract:

A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.

Keywords: beta function, compressor map, interpolation error, map optimization tool

Procedia PDF Downloads 250
19033 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye

Abstract:

Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 122
19032 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 126
19031 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 53
19030 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation

Authors: Serge B. Provost, Yishan Zhang

Abstract:

A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.

Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation

Procedia PDF Downloads 148
19029 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov

Abstract:

The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 402
19028 Development of a Smart Liquid Level Controller

Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo

Abstract:

In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.

Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module

Procedia PDF Downloads 111
19027 Alexandrium pacificum Cysts Distribution in One North African Lagoon Ecosystem

Authors: M. Fertouna Bellakhal, M. Bellakhal, A. Dhib, A. Fathalli, S. Turki, L. Aleya

Abstract:

Study of dinoflagellate cysts is a precious tool to get information about environment and water quality in many aquatic ecosystems. The distribution of Alexandrium pacificum cysts, in Bizerta lagoon located in North of Tunisia, was made based on sediment samples analysis from 123 equidistant stations delimiting 125 km² surfaces. Sediment characteristics such as percentage of water, organic matter, and particle size were analyzed to determine the factors that influence the distribution of this dinoflagellate. In addition, morphological examination and ribotyping of vegetative forms from microalgal cultures made from cyst germination confirmed the identity of the species attributed to A. pacificum. A correlation between the abundance of A. pacificum cysts and the percentage of water and sediment organic matter was recorded. In addition, the sedimentary fraction < 63μm was found to be potentially favorable for the installation and initiation of the Alexandrium pacificum efflorescence at the Bizerte lagoon. The mapping of cysts in this aquatic ecosystem has also allowed us to define distinct areas with specific abundance with closed relationship with shellfish aquaculture stations located within the lagoon.

Keywords: Alexandrium pacificum, cysts, Dinoflagellate, microalgal culture

Procedia PDF Downloads 133
19026 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 133
19025 Study of Chlorine Gas Leak Consequences in Direct Chlorination System Failure in Cooling Towers in the Petrochemical Industry

Authors: Mohammad H. Ruhipour, Mahdi Goharrokhi, Mahsa Ghasemi, Artadokht Ostadsarayi

Abstract:

In this paper, we are aiming to study the consequences of chlorine gas leak in direct chlorine gas injection compared to using bleach (sodium hypochlorite), studying the negative effects both on the environment and individuals. This study was performed in the cooling towers of a natural fractioning unit of Bandar-e-IMAM petrochemical plant. Considering that chlorine gas is highly toxic and based on the health regulation, its release into the surrounding environment can be very dangerous for people and even fatal for individuals. We studied performing quantitative studies in the worst cases of event incidence. In addition, studying alternative methods with a lower risk was also on the agenda to select the least likely possible option causing an accident. In this paper chlorine gas release consequences have been evaluated by using PHAST software. Reaching to 10 ppm of chlorine gas concentration was basis of hazardous area determination. The results show that the full chlorine gas line rupture scenario in Pasquill category F, were worst case, and many people could be harmed around cooling towers area because of chlorine gas inhalation.

Keywords: chlorine gas, consequence modeling, cooling towers, direct chlorination, risk assessment, system failure

Procedia PDF Downloads 260