Search results for: emotional intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3114

Search results for: emotional intelligence

1464 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 75
1463 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 17
1462 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 94
1461 Understanding Parental Style and Its Effect on the Wellbeing of Adolescents with Epilepsy

Authors: Arthy Vinayakam, Emilda Judith Ezhil Rajan

Abstract:

Adolescents with epilepsy living in developing country like India face many difficulties on stigma towards the disease. The psychological wellbeing of adolescents who are living with epilepsy has a varied influence on their daily activities and decision-making. Parental involvement with adolescents has always been a subject of caution. The dynamics in adolescents with epilepsy is much varied as their parental aspects has been known to have an impact on their education, socialization and wellbeing. The current study aims to identify the effect of parental styles, how they tend to effect the perception of self-concept that relate to the stigma in adolescents with epilepsy. A sample of 30 adolescents with epilepsy and their parents were taken; a control group of 30 adolescents and their parents were also taken. The General Health Questionnaire -12 was used as a screening for both groups to be included in the study. Parents were evaluated with Parenting Practices Questionnaire (PPQ). Adolescents were administered the Epilepsy Stigma Scale (ESS), Rosenberg Self-esteem Scale (RSS) and Adolescent Wellbeing Scale (AWS). Descriptive statistics was used to analyze the data. The findings of the study highlight the challenges of both parent and their influence on adolescent’s wellbeing. The findings also establish the impact of parenting style on the stigma in adolescents having epilepsy and how this influences their self-concept whereby their emotional strength.

Keywords: epilepsy, parenting style, stigma, wellbeing

Procedia PDF Downloads 285
1460 Adolescent Health Risk Behaviors and the Mediating Effects of Family Dynamics and Socio-Demographic Factors

Authors: Rufina C. Abul, Dylan Kyle D. Apostol, Darius Rex G. Binuya, Alyanah Mae F. Cauilan, Darren A. Diaz, Angelica Jones A. Gallang, Charisse G. Kiwang, Alyanna Nicole G. Mactal, Nadine Beatrize V. Nerona, Janella Nicole R. Posadas, Charisse Purie C. Toledo

Abstract:

Background: Dramatic physical development, socioemotional adjustment, and cognitive changes highlight adolescent development. Adolescent brains are susceptible to emotional reactivity, making them likely to engage in risk-taking and impulsive behaviors. The family is crucial in laying the foundations of good health. Aims: This study determined the degree of family cohesion, quality of father-child and mother-child relationships, and degree of academic pressure across cultures, age groups, and sexual orientations. Further, it sought the prevalence of adolescent health concerns, including suicide risks, risk-taking behaviors, social media engagement, and self-care deviations. Finally, the correlations between health risk behaviors and the elements of family dynamics were unraveled. Methods: The descriptive-correlational design served as the blueprint for this study. Data were collected from 1095 adolescents aged 12-21 in two high schools and two universities in Baguio City using self-report questionnaires. Data was analyzed using Microsoft Excel Toolpak and IBM SPSS Statistics to identify significant differences and relationships among variables through descriptive statistics (frequency, %, means and figures) and inferential statistics (ANOVA and logistic regression). Results and Discussion: Adolescents generally have strong family cohesion (FC), high-quality father-child relationships (F-CR), very high-quality mother-child relationships(M-CR), and experience high academic pressure (AP). Cultural affiliation does not influence the 4 elements of family dynamics; the higher the age, the stronger the family cohesion; males score significantly higher on family cohesion and mother-child relationship while significantly lower in perceived academic pressure compared to their female and LGBT counterparts. Suicide risk is prevalent among 29-63% of the population, safety issues have the lowest prevalence for having an abusive relationship (8.22%) and the highest for encountering major family changes (53.52%). Substance use was highest for vaping (22.74%), sexual engagement occurs in 14.61% of the population, while 63% are engaged in social media for >5 hours/day. The self-care deviation is highest for weight concerns (63.39%), lack of visits to health care professionals (64.65%) and lack of exercise (49.94%). All 4 elements of family dynamic (FC, F-CR, M-CR and AP) are significantly associated with safety concerns, suicide risks and social media engagement, while M-CR significantly influences cigarette smoking, alcohol drinking, rugby use and engagement in sex. Conclusion and Recommendations: Strong family cohesion and quality parent-child interactions improve emotional and behavioral outcomes. Sexual orientation has a significant impact on academic pressure and social media use, demanding targeted treatments. The link between family dynamics and health-risk behaviors emphasizes the importance of promoting positive family relationships and encouraging safer behaviors, which are critical for increasing adolescents' well-being.

Keywords: adolescent health, family cohesion, health risk behaviors, suicide risk

Procedia PDF Downloads 21
1459 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 63
1458 Human Action Recognition Using Wavelets of Derived Beta Distributions

Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel

Abstract:

In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.

Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet

Procedia PDF Downloads 414
1457 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 48
1456 Cluster Randomized Trial of 'Ready to Learn': An After-School Literacy Program for Children Starting School

Authors: Geraldine Macdonald, Oliver Perra, Nina O’Neill, Laura Neeson, Kathryn Higgins

Abstract:

Background: Despite improvements in recent years, almost one in six children in Northern Ireland (NI) leaves primary school without achieving the expected level in English and Maths. By early adolescence, this ratio is one in five. In 2010-11, around 9000 pupils in NI had failed to achieve the required standard in literacy and numeracy by the time they left full-time education. This paper reports the findings of an experimental evaluation of a programmed designed to improve educational outcomes of a cohort of children starting primary school in areas of high social disadvantage in Northern Ireland. The intervention: ‘Ready to Learn’ comprised two key components: a literacy-rich After School programme (one hour after school, three days per week), and a range of activities and support to promote the engagement of parents with their children’s learning, in school and at home. The intervention was delivered between September 2010 and August 2013. Study aims and objectives: The primary aim was to assess whether, and to what extent, ‘Ready to Learn’ improved the literacy of socially disadvantaged children entering primary schools compared with children in schools without access to the programme. Secondary aims included assessing the programme’s impact on children’s social, emotional and behavioural regulation, and parents’ engagement with their children’s learning. In total, 505 children (almost all) participated in the baseline assessment for the study, with good retention over seven sweeps of data collection. Study design: The intervention was evaluated by means of a cluster randomized trial, with schools as the unit of randomization and analysis. It included a qualitative component designed to examine process and implementation, and to explore the concept of parental engagement. Sixteen schools participated, with nine randomized to the experimental group. As well as outcome data relating to children, 134 semi-structured interviews were conducted with parents over the three years of the study, together with 88 interviews with school staff. Results: Given the children’s ages, not all measures used were direct measures of reading. Findings point to a positive impact of “Ready to Learn” on children’s reading achievement (comprehension and fluency), as assessed by the York Assessment of Reading Comprehension (YARC) and decoding, assessed using the Word Recognition and Phonic Skills (WRaPS3). Effects were not large, but evidence suggests that it is unusual for an after school programme to clearly to demonstrate effects on reading skills. No differences were found on three other measures of literacy-related skills: British Picture Vocabulary Scale (BPVS-II), Naming Speed and Non-word Reading Tests from the Phonological Assessment Battery (PhAB) or Concepts about Print (CAP) – the last due to an age-related ceiling effect). No differences were found between the two groups on measures of social, emotional and behavioural regulation, and due to low levels of participation, it was not possible directly to assess the contribution of the parent component to children’s outcomes. The qualitative data highlighted conflicting concepts of engagement between parents and school staff. Ready to Learn is a promising intervention that merits further support and evaluation.

Keywords: after-school, education, literacy, parental engagement

Procedia PDF Downloads 382
1455 Indigenous Conceptualization of School Readiness: Mother's Perspective in Pakistan

Authors: Ayesha Inam, R. Moazzam, Z. Akhtar

Abstract:

School readiness plays a significant role in helping a child deal with various school demands and expectations as well as in determining academic success outcomes. There is a scarcity of data concerning the condition of school readiness in Pakistan. This qualitative research seeks to examine the perspective of mothers about school readiness along with its four domains (self-care, socio-emotional, physical and cognitive) as well as about the appropriate age of entry into formal preschool. Fifteen interviews were conducted with mothers of pre-school children in Islamabad and Rawalpindi. It was found that mothers shared the common perception that children should be socially, emotionally, physically and cognitively prepared to be ready for pre-school. The results concluded that the mothers unanimously agreed in their perceptions that three to four years was the appropriate age range for children to begin pre-school and that early or late entry into pre-school had negative implications for children’s ability to learn and understand, and hence, their school readiness. Mental age was perceived as a more important criterion for deciding when to send children to pre-school. Mothers were found to send their children to school earlier, and children were found to be increasingly exposed to technology, both of which were found to influence children’s readiness for school. Both schools and mothers were found to play an instrumental role in preparing children for school and in school adjustment by nurturing their skills and abilities.

Keywords: perception of mothers, Pakistan, school readiness, entry to preschool

Procedia PDF Downloads 160
1454 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 138
1453 User Experience and Impact of AI Features in AutoCAD

Authors: Sarah Alnafea, Basmah Alalsheikh, Hadab Alkathiri

Abstract:

For over 30 years, AutoCAD, a powerful CAD software developed by Autodesk, has been an imperative need for design in industries such as engineering, building, and architecture. With the emerge of advanced technology, AutoCAD has undergone a revolutionary change with the involvement of artificial intelligence capabilities that have enhanced the productivity and efficiency at work and quality in the design for the users. This paper investigates the role AI in AutoCAD, especially in intelligent automation, generative design, automated design ideas, natural language processing, and predictive analytics. To identify further, A survey among users was also conducted to assess the adoption and satisfaction of AI features and identify areas for improvement. The Competitive standing of AutoCAD is further crosschecked against other AI-enabled CAD software packages, including SolidWorks, Fusion 360, and Rhino.In this paper, an overview of the current impacts of AI in AutoCAD is given, along with some recommendations for the future road of AI development to meet users’ requirements

Keywords: artificail inteligence, natural language proccesing, intelligent automation, generative design

Procedia PDF Downloads 15
1452 Grief and Repenting: The Engaging Remembrance in Thomas Hardy’s ‘Poems of 1912-13’

Authors: Chih-Chun Tang

Abstract:

Nostalgia, to some people, may seem foolhardy in a way. However, nostalgia is a completely and intensely private but social, collective emotion. It has continuing consequence and outgrowth for our lives as social actions. It leads people to hunt and explore remembrance of persons and places of our past in an effort to confer meaning of persons and places of present. In the ‘Poems of 1912-13’ Thomas Hardy, a British poet, composed a series of poems after the unexpected death of his long-disaffected wife, Emma. The series interprets the cognitive and emotional concussion of Emma’s death on Hardy, concerning his mind and real visit to the landscape in Cornwall, England. Both spaces perform the author’s innermost in thought to his late wife and to the landscape. They present an apparent counterpart of the poet and his afflicted conscience. After Emma had died, Hardy carried her recollections alive by roaming about in the real visit and whimsical land (space) they once had drifted and meandered. This paper highlights the nostalgias and feds that seem endlessly to crop up.

Keywords: Thomas Hardy, remembrance, psychological, poems 1912-13, Fred Davis, nostalgia

Procedia PDF Downloads 276
1451 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present

Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Philippe Blanchard, Simon Richir

Abstract:

Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.

Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving

Procedia PDF Downloads 77
1450 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 164
1449 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 76
1448 The Investigation of Green Building Certification on the Productivity and Mental and Physical Health of Building's Occupants in Tehran, Iran

Authors: Armin Samarghandi, Amirreza Jafari, Mohamad Ghiasi

Abstract:

Numerous assertions and some empirical evidence imply that 'green' buildings ought to be more productive and healthier (mentally and physiologically) than conventional structures. Since then, empirical data has been equivocal, indicating either that the studies are inaccurate or that the research has just scratched the surface of green buildings in offices, accommodation, and hospital settings and not taken the aforementioned holistically. This study compared four green-certified buildings -one residential green building, one green hospital, and one green school- with conventional structures in Tehran, Iran, by means of a questionnaire spread among those utilizing these buildings, and assessing their productivity and health rate as opposed to the time they resided, worked in conventional buildings. The results demonstrated higher scores pertaining to productivity and physical and mental wellness as a consequence of better indoor environmental quality (IEQ), natural lighting, design, and sustainability of these buildings against non-green buildings. In addition, ancillary matters -environmental, financial, intellectual, emotional, social, and spiritual dimensions of participants- were indirectly evaluated, and the same results were produced.

Keywords: green building, LEED, productivity, physical and mental health, indoor environmental quality

Procedia PDF Downloads 129
1447 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbours are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems

Procedia PDF Downloads 445
1446 Use of Computer and Machine Learning in Facial Recognition

Authors: Neha Singh, Ananya Arora

Abstract:

Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.

Keywords: facial action, action units, coding, machine learning

Procedia PDF Downloads 110
1445 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.

Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization

Procedia PDF Downloads 358
1444 The Meaning of Stillness: Based on the Errand Boy Project in Tibet during the Pandemic Quarantine in Shanghai in the Mayday Holiday

Authors: Mingyuan Duan

Abstract:

Many scholars have paid attention to the relationship between mobility and stillness, but most of them focus on stillness from the perspective of serving mobility. This study believes that more attention should be paid to the importance of stillness, and we suggest reexamining the meaning of stillness in terms of the value of stillness to people. The Errand Boy Project was launched by a social innovation enterprise called Bottle Dream during the May Day holiday in 2022. It linked volunteers from all over the world online to help people who are trapped at home due to the epidemic realize their outdoor wishes: get closer to nature and relieve their anxious mood. Taking Errand Boy in Tibet as a case study, this paper analyzes the emotional expressions and comments of people with limited mobility in the face of nature in the webcast room and explains the importance of stillness to humans from a non-human perspective. This study points out that the significance of stillness to human beings during the pandemic is composed of three aspects: the sense of solidity established by a steady mobile phone network connection, the stable possibility of wish fulfillment predicted by the periodic regularity of plant growth, and the transcendent spiritual power from the stable sacred mountain.

Keywords: stillness, non-human, pandemic, mobility

Procedia PDF Downloads 78
1443 Shared Beliefs and Behavioral Labels in Bullying among Middle Schoolers: Qualitative Analysis of Peer Group Dynamics

Authors: Malgorzata Wojcik

Abstract:

Groups are a powerful and significant part of human development. They serve as major emergent microsocial structures in children’s and youth’s ecological system. During middle and secondary school, peer groups become a particularly salient influence. While they promote a range of prosocial and positive emotional and behavioral attributes, they can also elicit negative or antisocial attributes, effectively “bringing out the worst” in some individuals. The grounded theory approach was employed to guide data collection and analysis, as it allows for a deeper understanding of the group processes and students’ perspectives on complex intragroup relations. Students’ perspectives on bullying cases were investigated by observing daily interactions among those involved and interviewing 47 students. The results complement theories of labeling in bullying by showing that all students self-label themselves and find it difficult to break patterns of behaviors related to bullying, such as supporting the bully or not defending the victim. In terms of the practical implications, the findings indicate that it could be beneficial to use non-punitive, restorative anti-bullying interventions that implement peer influence to transform bullying relations by removing behavioral labels.

Keywords: bullying, peer group, victimization, class reputation

Procedia PDF Downloads 120
1442 An Integrated DANP-PROMETHEE II Approach for Air Traffic Controllers’ Workload Stress Problem

Authors: Jennifer Loar, Jason Montefalcon, Kissy Mae Alimpangog, Miriam Bongo

Abstract:

The demanding, professional roles that air traffic controllers (ATC) play in air transport operation provided the main motivation of this paper. As the controllers’ workload stress becomes more complex due to various stressors, the challenge to overcome these in the pursuit of improving the efficiency of controllers and safety level of aircrafts has been relevant. Therefore, in order to determine the main stressors and surface the best alternative, two widely-known multi-criteria decision-making (MCDM) methods, DANP and PROMETHEE II, are applied. The proposed method is demonstrated in a case study at Mactan Civil Aviation Authority of the Philippines (CAAP). The results showed that the main stressors are high air traffic volume, extraneous traffic, unforeseen events, limitations and reliability of equipment, noise/distracter, micro climate, bad posture, relations with supervisors and colleagues, private life conditions/relationships, and emotional conditions. In the outranking of alternatives, compartmentalization is believed to be the most preferred alternative to overcome controllers’ workload stress. This implies that compartmentalization can best be applied to reduce controller workload stress.

Keywords: air traffic controller, DANP, MCDM, PROMETHEE II, workload stress

Procedia PDF Downloads 273
1441 Critical Review of Web Content Mining Extraction Mechanisms

Authors: Rabia Bashir, Sajjad Akbar

Abstract:

There is an inevitable demand of web mining due to rapid increase of huge information on the Internet, but the striking variety of web structures has made required content retrieval a difficult task. To counter this issue, Web Content Mining (WCM) emerges as a potential candidate which extracts and integrates suitable resources of data to users. In past few years, research has been done on several extraction techniques for WCM i.e. agent-based, template-based, assumption-based, statistic-based, wrapper-based and machine learning. However, it is still unclear that either these approaches are efficiently tackling the significant challenges of WCM or not. To answer this question, this paper identifies these challenges such as language independency, structure flexibility, performance, automation, dynamicity, redundancy handling, intelligence, relevant content retrieval, and privacy. Further, mapping of these challenges is done with existing extraction mechanisms which helps to adopt the most suitable WCM approach, given some conditions and characteristics at hand.

Keywords: content mining challenges, web content mining, web content extraction approaches, web information retrieval

Procedia PDF Downloads 551
1440 A Thorough Analysis of the Literature on the Airport Service Quality and Patron Satisfaction

Authors: Mohammed Saad Alanazi

Abstract:

Satisfaction of travelers with services provided in the airports is a sign of competitiveness and the corporate image of the airport. This study conducted a systematic literature review of recent studies published after 2017 regarding the factors that positively influence travelers’ satisfaction and encourage them to report positive reviews online. This study found variations among the studies found. They used several research methodologies, and datasets and focused on different airports, yet, they commonly categorized airport services into seven categories that should receive high intention because their qualities were found increasing review rate and positivity. It was found that studies targeting travelers’ satisfaction and intention of revisiting tended to use primary sources of data (survey); meanwhile, studies concerned positivity and negativity of comments towards airport services often used online reviews provided by travelers.

Keywords: business Intelligence, airport service quality, passenger satisfaction, thorough analysis

Procedia PDF Downloads 84
1439 Children with Autistic Spectrum Disorders in Co-Taught Classes in Greece: Teachers’ View

Authors: Tryfon Mavropalias, Anastasia Alevriadou

Abstract:

Co-teaching is a relatively recent model of providing teaching services to students with disabilities in Greece. According to recent studies, it seems that the largest number of students who take part in the Greek co-teaching programme are children with Autistic Spectrum Disorders (ASD). The aim of the suggested study is to investigate the effectiveness and usefulness of co-teaching to students with ASD as well as skills students with ASD develop during co-teaching in primary education classes. To conduct the research, quantitative method of research was used, with the means of research being a questionnaire including open and close type questions. The sample of this research consists of 142 primary school co-teachers from all over Northern Greece (71 general education teachers and 71 special education teachers). Given the results, it was concluded that co-teachers believe that including and educating children with Autistic Spectrum Disorders in the general class benefits those who autism is measured from the middle to the upper end of the spectrum. Additionally, children develop social skills first, followed by emotional and cognitive skills. Ultimately, educators declared that they are prepared only to a limited degree to effectively support students with Autistic Spectrum Disorders in general classes.

Keywords: Autistic spectrum disorders, co-teaching, co-teachers, co-taught class

Procedia PDF Downloads 361
1438 The Effectiveness of Communication Skills Using Transactional Analysis on the Dimensions of Marital Intimacy: An Experimental Study

Authors: Mehravar Javid, James Sexton, S. Taridashti, Joseph Dorer

Abstract:

Objective: Intimacy is among the most important factors in marital relationships and includes different aspects. Communication skills can enable couples to promote their intimacy. This experimental study was conducted to measure the effectiveness of communication skills using Transactional Analysis (TA) on various dimensions of marital intimacy. Method: The participants in this study were female teachers. Analysis of covariance was recruited in the experimental group (n =15) and control group (n =15) with pre-test and post-test. Random assignment was applied. The experimental group received the Transactional Analysis training program for 9 sessions of 2 hours each week. The instrument was the Marital Intimacy Questionnaire, with 87 items and 9 subscales. Result: The findings suggest that training in Transactional Analysis significantly increased the total score of intimacy except spiritual intimacy on the post-test. Discussion: According to the obtained data, it is concluded that communication skills using Transactional Analysis (TA) training could increase intimacy and improve marital relationships. The study highlights the differential effects on emotional, rational, sexual, and psychological intimacy compared to physical, social/recreational, and relational intimacy over a 9-week period.

Keywords: communication skills, intimacy, marital relationships, transactional analysis

Procedia PDF Downloads 100
1437 Medical Advances in Diagnosing Neurological and Genetic Disorders

Authors: Simon B. N. Thompson

Abstract:

Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.

Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning

Procedia PDF Downloads 388
1436 Toward Concerned Leadership: A Novel Conceptual Model to Raise the Well-Being of Employees and the Leaderful Practice of Organizations

Authors: Robert McGrath, Zara Qureshi

Abstract:

A innovative leadership philosophy that is proposed herein is distinctly more humane than most leadership approaches Concerned Leadership. The central idea to this approach is to consider the whole person that comes to work; their professional skills and talents, as well as any personal, emotional challenges that could be affecting productivity and effectiveness at work. This paper explores Concerned Leadership as an integration of the two conceptual models areas examined in this paper –(1) leaderful organizations and practices, as well as (2) organizational culture, and defines leadership in the context of Mental Health and Wellness in the workplace. Leaderful organizations calls for organizations to implement leaderful practice. Leaderful practice is when leadership responsibility and decision-making is shared across all team members and levels, versus only delegated to top management as commonly seen. A healthy culture thrives off key aspects such as acceptance, employee pride, equal opportunity, and strong company leadership. Concerned Leadership is characterized by five main components: Self-Concern, Leaderful Practice, Human Touch, Belonging, and Compassion. As scholars and practitioners conceptualize leadership in practice, the present model seeks to uphold the dignity of each organizational member, thereby having the potential to transform workplaces and support all members.

Keywords: leadership, mental health, reflective practice, organizational culture

Procedia PDF Downloads 83
1435 DURAFILE: A Collaborative Tool for Preserving Digital Media Files

Authors: Santiago Macho, Miquel Montaner, Raivo Ruusalepp, Ferran Candela, Xavier Tarres, Rando Rostok

Abstract:

During our lives, we generate a lot of personal information such as photos, music, text documents and videos that link us with our past. This data that used to be tangible is now digital information stored in our computers, which implies a software dependence to make them accessible in the future. Technology, however, constantly evolves and goes through regular shifts, quickly rendering various file formats obsolete. The need for accessing data in the future affects not only personal users but also organizations. In a digital environment, a reliable preservation plan and the ability to adapt to fast changing technology are essential for maintaining data collections in the long term. We present in this paper the European FP7 project called DURAFILE that provides the technology to preserve media files for personal users and organizations while maintaining their quality.

Keywords: artificial intelligence, digital preservation, social search, digital preservation plans

Procedia PDF Downloads 447