Search results for: big data markets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25793

Search results for: big data markets

24143 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 365
24142 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 508
24141 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 390
24140 Some Analytical Characteristics of Red Raspberry Jams

Authors: Cristina Damian, Eduard Malcek, Ana Leahu, Sorina Ropciuc, Andrei Lobiuc

Abstract:

Given the high rivalry nowadays, the food sector must offer the markets an attractive product, which at the same time has good quality and is safe from health aspects for the consumers. Known for their high content of antioxidant compounds, especially anthocyanins, which proven human health benefits, berries from the Rosaceae family plants have a significantly high level of phytochemicals: phenolic flavonoids, such as anthocyanins, ellagic acid (tannin), quercetin, gallic acid, cyanidin, pelargonidine, catechins, kaempferol and salicylic acid. Colour and bioactive compounds, such as vitamin C and anthocyanins, are important for the attractiveness of berries and their preserved products. The levels of bioactive compounds and sensory properties of the product as it reaches the consumer are dependent on raw material, i.e., berries used, processing, and storage conditions. In this study, four varieties of raspberry jam were analyzed, 3 of them purchased commercially; they were purchased at reasonable prices, precisely to include as large a sample of the consumer population as possible. The fourth assortment was made at home according to the traditional recipe without the addition of sweeteners or preservatives. As for the homemade red raspberry jam, it had a sugar concentration of 64.9%, being the most appreciated of all assortments. The homemade raspberry jam was most appreciated due to the taste and aroma of the product. The SCHWARTAU assortment was chosen in second place by the participants in the study (sensory analysis). The quality/price ratio is also valid this time, finding that a high-quality product will have a higher purchase price. Thus, the study had the role of presenting the preferences of the sample participating in the study by age categories.

Keywords: red raspberry, jam, antioxidant, colour, sensory analysis

Procedia PDF Downloads 10
24139 An Exhaustive All-Subsets Examination of Trade Theory on WTO Data

Authors: Masoud Charkhabi

Abstract:

We examine trade theory with this motivation. The full set of World Trade Organization data are organized into country-year pairs, each treated as a different entity. Topological Data Analysis reveals that among the 16 region and 240 region-year pairs there exists in fact a distinguishable group of region-period pairs. The generally accepted periods of shifts from dissimilar-dissimilar to similar-similar trade in goods among regions are examined from this new perspective. The period breaks are treated as cumulative and are flexible. This type of all-subsets analysis is motivated from computer science and is made possible with Lossy Compression and Graph Theory. The results question many patterns in similar-similar to dissimilar-dissimilar trade. They also show indications of economic shifts that only later become evident in other economic metrics.

Keywords: econometrics, globalization, network science, topological data, analysis, trade theory, visualization, world trade

Procedia PDF Downloads 372
24138 Proton Nuclear Magnetic Resonance Based Metabolomics and 13C Isotopic Ratio Evaluation to Differentiate Conventional and Organic Soy Sauce

Authors: Ghulam Mustafa Kamal, Xiaohua Wang, Bin Yuan, Abdullah Ijaz Hussain, Jie Wang, Shahzad Ali Shahid Chatha, Xu Zhang, Maili Liu

Abstract:

Organic food products are becoming increasingly popular in recent years, as consumers have turned more health conscious and environmentally aware. A lot of consumers have understood that the organic foods are healthier than conventionally produced food stuffs. Price difference between conventional and organic foods is very high. So, it is very common to cheat the consumers by mislabeling and adulteration. Our study describes the 1H NMR based approach to characterize and differentiate soy sauce prepared from organically and conventionally grown raw materials (wheat and soybean). Commercial soy sauce samples fermented from organic and conventional raw materials were purchased from local markets. Principal component analysis showed clear separation among organic and conventional soy sauce samples. Orthogonal partial least squares discriminant analysis showed a significant (p < 0.01) separation among two types of soy sauce yielding leucine, isoleucine, ethanol, glutamate, lactate, acetate, β-glucose, sucrose, choline, valine, phenylalanine and tyrosine as important metabolites contributing towards this separation. Abundance ratio of 13C to 12C was also evaluated by 1H NMR spectroscopy which showed an increased ratio of 13C isotope in organic soy sauce samples indicating the organically grown wheat and soybean used for the preparation of organic soy sauce. Results of the study can be helpful to the end users to select the soy sauce of their choice. This information could also pave the way to further trace and authenticate the raw materials used in production of soy sauce.

Keywords: 1H NMR, multivariate analysis, organic, conventional, 13C isotopic ratio, soy sauce

Procedia PDF Downloads 262
24137 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 359
24136 An Exploratory Study of the Ghanaian Music Industry: Its Impacts on the Economy and Society

Authors: Ralph Nyadu-Addo, Francis Matambalya, Utz Dornberger

Abstract:

The global music industry is a multi-billion dollar sector. The potential of Africa’s music industry is widely recognised in the socio-economic development milieu. It has impacted positively on several sectors including most especially the tourism, media and information, communication technology (ICT) among others. It is becoming increasingly clear that even in Africa (as demonstrated in Nigeria) that in addition to its intrinsic value, the sector has significant economic returns. UNCTAD observed, the creative industries offer some of the best prospects for high growth in least developed countries. The statistics from Africa may be far lower than similar sectors in developed countries but it goes to give further credence to several UNCTAD publications which say the creative industry is under researched and its potential under-estimated but holds the key to its rapid development The emerging creative economy (music in particular) has become a leading component of economic growth, employment, trade, innovation, and social cohesion in many countries. In line with these developments, the Ghana government recognizes the potential that the Creative Industries have to shape and reinforce Ghana’s economic growth. Creative sectors, particularly music, tend to rely less on sophisticated infrastructure or capital-intensive investment. Potential is particularly abundant in Africa, where musical creativity is rich, diverse, well-loved, and constantly evolving while drawing on strong traditions. The development of a popular music industry thus represents low-hanging fruit for most African economies says the World Bank. As we shift towards economic diversification using the creative industry, value is increasingly created at the intersection of arts, business and technology. Cultural and creative entrepreneurs are leading this trend. It is one of the areas where value is captured within the country as emerging trends have shown in Nigeria and Ghana among others. Yet, evidence shows that the potential of the cultural and creative sectors remains largely untapped. Furthermore, its socio-economic impact remains under-researched in many developing countries and its dynamics unknown. Despite its huge influence on music repertoire across the globe, most countries in Africa have not historically been significant markets for the international music industry. Today, that is beginning to change. Generally, reliable and adequate literature about music in the sub-region is difficult to obtain. The growing interests in academia and business cycles about a reliable data on the growing music industry in developing countries have called for an urgent need to undertake this research. Research questions: i. Who are the major stakeholders in the music value chain in Ghana? ii. How much of value is captured domestically iii. What is the economic impact of the Ghanaian music industry iv. How has the advent of ICT (internet) impacted on the music landscape? Research sources will be mainly through interviews of major stakeholders, baseline study of the industry by KPMG and content analysis of related newspapers and magazines.

Keywords: economic impact, information communications technology (ICT), music-industry, value chain

Procedia PDF Downloads 294
24135 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 147
24134 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
24133 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 289
24132 Sharing Tacit Knowledge: The Essence of Knowledge Management

Authors: Ayesha Khatun

Abstract:

In 21st century where markets are unstable, technologies rapidly proliferate, competitors multiply, products and services become obsolete almost overnight and customers demand low cost high value product, leveraging and harnessing knowledge is not just a potential source of competitive advantage rather a necessity in technology based and information intensive industries. Knowledge management focuses on leveraging the available knowledge and sharing the same among the individuals in the organization so that the employees can make best use of it towards achieving the organizational goals. Knowledge is not a discrete object. It is embedded in people and so difficult to transfer outside the immediate context that it becomes a major competitive advantage. However, internal transfer of knowledge among the employees is essential to maximize the use of knowledge available in the organization in an unstructured manner. But as knowledge is the source of competitive advantage for the organization it is also the source of competitive advantage for the individuals. People think that knowledge is power and sharing the same may lead to lose the competitive position. Moreover, the very nature of tacit knowledge poses many difficulties in sharing the same. But sharing tacit knowledge is the vital part of knowledge management process because it is the tacit knowledge which is inimitable. Knowledge management has been made synonymous with the use of software and technology leading to the management of explicit knowledge only ignoring personal interaction and forming of informal networks which are considered as the most successful means of sharing tacit knowledge. Factors responsible for effective sharing of tacit knowledge are grouped into –individual, organizational and technological factors. Different factors under each category have been identified. Creating a positive organizational culture, encouraging personal interaction, practicing reward system are some of the strategies that can help to overcome many of the barriers to effective sharing of tacit knowledge. Methodology applied here is completely secondary. Extensive review of relevant literature has been undertaken for the purpose.

Keywords: knowledge, tacit knowledge, knowledge management, sustainable competitive advantage, organization, knowledge sharing

Procedia PDF Downloads 398
24131 Assessment of Food Safety Culture in Select Restaurants and a Produce Market in Doha, Qatar

Authors: Ipek Goktepe, Israa Elnemr, Hammad Asim, Hao Feng, Mosbah Kushad, Hee Park, Sheikha Alzeyara, Mohammad Alhajri

Abstract:

Food safety management in Qatar is under the shared oversight of multiple agencies in two government ministries (Ministry of Public Health and Ministry of Municipality and Environment). Despite the increasing number and diversity of the food service establishments, no systematic food surveillance system is in place in the country, which creates a gap in terms of determining the food safety attitudes and practices applied in the food service operations. Therefore, this study seeks to partially address this gap through determination of food safety knowledge among food handlers, specifically with respect to food preparation and handling practices, and sanitation methods applied in food service providers (FSPs) and a major market in Doha, Qatar. The study covered a sample of 53 FSPs randomly selected out of 200 FSPs. Face-to-face interviews with managers at participating FSPs were conducted using a 40-questions survey. Additionally, 120 produce handlers who are in direct contact with fresh produce at the major produce market in Doha were surveyed using a questionnaire containing 21 questions. A written informed consent was obtained from each survey participant. The survey data were analyzed using the chi-square test and correlation test. The significance was evaluated at p ˂ 0.05. The results from the FSPs surveys indicated that the average age of FSPs was 11 years, with the oldest and newest being established in 1982 and 2015, respectively. Most managers (66%) had college degree and 68% of them were trained on the food safety management system known as HACCP. These surveys revealed that FSP managers’ training and education level were highly correlated with the probability of their employees receiving food safety training while managers with lower education level had no formal training on food safety for themselves nor for their employees. Casual sit-in and fine dine-in restaurants consistently kept records (100%), followed by fast food (36%), and catering establishments (14%). The produce handlers’ survey results showed that none of the workers had any training on safe produce handling practices. The majority of the workers were in the age range of 31-40 years (37%) and only 38% of them had high-school degree. Over 64% of produce handlers claimed to wash their hands 4-5 times per day but field observations pointed limited handwashing as there was soap in the settings. This observation suggests potential food safety risks since a significant correlation (p ˂ 0.01) between the educational level and the hand-washing practices was determined. This assessment on food safety culture through determination of food and produce handlers' level of knowledge and practices, the first of its kind in Qatar, demonstrated that training and education are important factors which directly impact the food safety culture in FSPs and produce markets. These findings should help in identifying the need for on-site training of food handlers for effective food safety practices in food establishments in Qatar.

Keywords: food safety, food safety culture, food service providers, food handlers

Procedia PDF Downloads 340
24130 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 139
24129 A Study on Interaction between Traditional Culture and Modern Womenswear

Authors: Yu-Wei Chu, Marie Aja-Herrera, Denis Antoine, Mengjie Di

Abstract:

The purpose of this paper is to explore the innovative perspective of the local traditional culture of garments from different continents. The relationship between the local culture, the indigenous traditional technique of textile manufacture, and modern womenswear will be investigated. This will include exploring and discussing traditional techniques to create textiles reflecting different cultures and relevant handicrafts, including the history of these different peoples and regions. However, along with the improvement of technology, the diversity of culture is usually unified into a single aesthetic element, which makes fashion lack traditional cultural layers. Local cultural awareness has been gradually emerging in womenswear in recent years with the strong sweep of globalization. The possible loss of traditional art and crafts became an awareness for different cultures, who realized the necessity to protect and preserve their individual uniqueness. Modern womenswear is one of the largest markets in the fashion and apparel marketplace. Therefore, the commonalities of traditional textiles and garments for modern womenswear will be researched. Localized traditional fabrics have some elements, such as weaving techniques and other related crafts, in common with more modern manufacturing methods. In addition, the common point of traditional clothing is the use of draping, construction, and fabric manipulation. This paper aims to explore these factors, as discussed above, and also apply, in an innovative and creative manner, some of these traditional arts and crafts to modern womenswear. The combination of textile manipulation and different construction techniques can support the development of innovative womenswear to include a diversity of aesthetics. The main contribution of the paper is to find out the solution to bring local culture into the formal womenswear market with modern aesthetics to realize the ideal of traditional culture reconstruction.

Keywords: traditional culture, modern womenswear, diversity, aesthetics

Procedia PDF Downloads 114
24128 Hidden Hot Spots: Identifying and Understanding the Spatial Distribution of Crime

Authors: Lauren C. Porter, Andrew Curtis, Eric Jefferis, Susanne Mitchell

Abstract:

A wealth of research has been generated examining the variation in crime across neighborhoods. However, there is also a striking degree of crime concentration within neighborhoods. A number of studies show that a small percentage of street segments, intersections, or addresses account for a large portion of crime. Not surprisingly, a focus on these crime hot spots can be an effective strategy for reducing community level crime and related ills, such as health problems. However, research is also limited in an important respect. Studies tend to use official data to identify hot spots, such as 911 calls or calls for service. While the use of call data may be more representative of the actual level and distribution of crime than some other official measures (e.g. arrest data), call data still suffer from the 'dark figure of crime.' That is, there is most certainly a degree of error between crimes that occur versus crimes that are reported to the police. In this study, we present an alternative method of identifying crime hot spots, that does not rely on official data. In doing so, we highlight the potential utility of neighborhood-insiders to identify and understand crime dynamics within geographic spaces. Specifically, we use spatial video and geo-narratives to record the crime insights of 36 police, ex-offenders, and residents of a high crime neighborhood in northeast Ohio. Spatial mentions of crime are mapped to identify participant-identified hot spots, and these are juxtaposed with calls for service (CFS) data. While there are bound to be differences between these two sources of data, we find that one location, in particular, a corner store, emerges as a hot spot for all three groups of participants. Yet it does not emerge when we examine CFS data. A closer examination of the space around this corner store and a qualitative analysis of narrative data reveal important clues as to why this store may indeed be a hot spot, but not generate disproportionate calls to the police. In short, our results suggest that researchers who rely solely on official data to study crime hot spots may risk missing some of the most dangerous places.

Keywords: crime, narrative, video, neighborhood

Procedia PDF Downloads 238
24127 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 38
24126 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 73
24125 Microarray Data Visualization and Preprocessing Using R and Bioconductor

Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava

Abstract:

Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.

Keywords: microarray analysis, R language, affymetrix visualization, bioconductor

Procedia PDF Downloads 480
24124 Challenges of Sustainable Development of Small and Medium-Sized Enterprises in Georgia

Authors: Kharaishvili Eteri

Abstract:

The article highlights the importance of small and medium-sized enterprises in achieving the goals of sustainable development of the economy and increasing the well-being of the population. The opinion is put forward that it is necessary to adapt the activities of small and medium-sized firms in Georgia to sustainable business models. Therefore, it is important to identify the challenges that will ensure compliance with the goals and requirements of sustainable development of small and mediumsized enterprises. Objectives. The goal of the study is to reveal the challenges of sustainable development in small and medium-sized enterprises in Georgia and to develop recommendations for strategic development opportunities. Methodologies The challenges of sustainable development of small and medium-sized enterprises are investigated with the following methodology: bibliographic research of scientific works and reports of organizations is carried out; Based on the grouping of sustainable development goals, the performance indicators of these goals are studied; Differences with respect to the corresponding indicators of European countries are determined by the comparison method; The matrix scheme establishes the conditions and tools for sustainable development; Challenges of sustainable development are identified by factor analysis. Contributions Trends in the sustainable development of small and medium-sized enterprises are studied from the point of view of economic, social and environmental factors; To ensure sustainability, the conditions and tools for sustainable development are established (certified supply chains and global markets, allocation of financial resources necessary for sustainable development, proper public procurement, highly qualified workforce, etc.); Several main challenges have been identified in the sustainable development of small and medium-sized enterprises, including: limited internal resources; Institutional factors, especially vague and imperfect regulations, bureaucracy; low level of investments; Low level of qualification of human capital and others.

Keywords: small and medium-sized enterprises, sustainable development, conditions of sustainable development, strategic directions of sustainable development.

Procedia PDF Downloads 105
24123 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution

Authors: Najrullah Khan, Athar Ali Khan

Abstract:

The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.

Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation

Procedia PDF Downloads 535
24122 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 220
24121 Standard Languages for Creating a Database to Display Financial Statements on a Web Application

Authors: Vladimir Simovic, Matija Varga, Predrag Oreski

Abstract:

XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.

Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange

Procedia PDF Downloads 394
24120 Analyze and Visualize Eye-Tracking Data

Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael

Abstract:

Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.

Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades

Procedia PDF Downloads 135
24119 Privacy Rights of Children in the Social Media Sphere: The Benefits and Challenges Under the EU and US Legislative Framework

Authors: Anna Citterbergova

Abstract:

This study explores the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, namely the GDPR (2018) and COPPA (2000). Considering that children are online for the majority of their free time, one cannot overlook the negative side effects that may be associated with online participation, which may put children’s wellbeing and their fundamental rights at risk. The question of whether the current relevant legislative framework in relation to the responsibilities of the internet service providers (ISPs) are adequate safeguards and guarantees to children’s personal data protection has been an evolving debate both in the US and in the EU. From a children’s rights perspective, processors of personal data have certain obligations that must meet the international human rights principles (e. g. the CRC, ECHR), which require taking into account the best interest of the child. Accordingly, the need to protect children’s privacy online remains strong and relevant with the expansion of the number and importance of social media platforms to human life. At the same time, the landscape of the internet is rapidly evolving, and commercial interests are taking a more targeted approach in seeking children’s data. Therefore, it is essential to constantly evaluate the ongoing and evolving newly adopted market policies of ISPs that may misuse the gap in the current letter of the law. Previous studies in the field have already pointed out that both GDPR and COPPA may theoretically not be sufficient in protecting children’s personal data. With the focus on social media platforms, this study uses the doctrinal-descriptive method to identifiy the mechanisms enshrined in the GDPR and COPPA designed to protect children’s personal data. In its second part, the study includes a data gathering phase by the national data protection authorities responsible for monitoring and supervision of the GDPR in relation to children’s personal data protection who monitor the enforcement of the data protection rules throughout the European Union an contribute to their consistent application. These gathered primary source of data will later be used to outline the series of benefits and challenges to children’s persona lata protection faced by these institutes and the analysis that aims to suggest if and/or how to hold ISPs accountable while striking a fair balance between the commercial rights and the right to protection of the personal data of children. The preliminary results can be divided into two categories. First, conclusions in the doctrinal-descriptive part of the study. Second, specific cases and situations from the practice of national data protection authorities. While for the first part, concrete conclusions can already be presented, the second part is currently still in the data gathering phase. The result of this research is a comprehensive analysis on the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, based on doctrinal-descriptive approach and original empirical data.

Keywords: personal data of children, personal data protection, GDPR, COPPA, ISPs, social media

Procedia PDF Downloads 96
24118 Modelling the Education Supply Chain with Network Data Envelopment Analysis

Authors: Sourour Ramzi, Claudia Sarrico

Abstract:

Little has been done on network DEA in education, and nobody has attempted to model the whole education supply chain using network DEA. As such the contribution of the present paper is to propose a model for measuring the efficiency of education supply chains using network DEA. First, we use a general survey of data envelopment analysis (DEA) to establish the emergent themes for research in DEA, and focus on the theme of Network DEA. Second, we use a survey on two-stage DEA models, and Network DEA to write a state of the art on Network DEA, particularly applied to supply chain management. Third, we use a survey on DEA applications to establish the most influential papers on DEA education applications, in order to establish the state of the art on applications of DEA in education, in general, and applications of DEA to education using network DEA, in particular. Finally, we propose a model for measuring the performance of education supply chains of different education systems (countries or states within a country, for instance). We then use this model on some empirical data.

Keywords: supply chain, education, data envelopment analysis, network DEA

Procedia PDF Downloads 368
24117 Secure Transmission Scheme in Device-to-Device Multicast Communications

Authors: Bangwon Seo

Abstract:

In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.

Keywords: device-to-device communications, wiretap channel, secure transmission, precoding

Procedia PDF Downloads 291
24116 Online Shopping vs Privacy – Results of an Experimental Study

Authors: Andrzej Poszewiecki

Abstract:

The presented paper contributes to the experimental current of research on privacy. The question of privacy is being discussed at length at present, primarily among lawyers and politicians. However, the matter of privacy has been of interest for economists for some time as well. The valuation of privacy by people is of great importance now. This article is about how people valuate their privacy. An experimental method has been utilised in the conducted research – the survey was carried out among customers of an online store, and the studied issue was whether their readiness to sell their data (WTA) was different from the willingness to buy data back (WTP). The basic aim of this article is to analyse whether people shopping on the Internet differentiate their privacy depending on whether they protect or sell it. The achieved results indicate the presence of major differences in this respect, which do not always come up with the original expectations. The obtained results have supported the hypothesis that people are more willing to sell their data than to repurchase them. However, the hypothesis that the value of proposed remuneration affects the willingness to sell/buy back personal data (one’s privacy) has not been supported.

Keywords: privacy, experimental economics, behavioural economics, internet

Procedia PDF Downloads 293
24115 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being

Procedia PDF Downloads 70
24114 Etiquette Learning and Public Speaking: Early Etiquette Learning and Its Impact on Higher Education and Working Professionals

Authors: Simran Ballani

Abstract:

The purpose of this paper is to call education professionals to implement etiquette and public speaking skills for preschoolers, primary, middle and higher school students. In this paper the author aims to present importance of etiquette learning and public speaking curriculum for preschoolers, reflect on experiences from implementation of the curriculum and discuss the effect of the said implementation on higher education/global job market. Author’s aim to introduce this curriculum was to provide children with innovative learning and all around development. This training of soft skills at kindergarten level can have a long term effect on their social behaviors which in turn can contribute to professional success once they are ready for campus recruitment/global job markets. Additionally, if preschoolers learn polite, appropriate behavior at early age, it will enable them to become more socially attentive and display good manners as an adult. It is easier to nurture these skills in a child rather than changing bad manners at adulthood. Preschool/Kindergarten education can provide the platform for children to learn these crucial soft skills irrespective of the ethnicity, economic or social background they come from. These skills developed at such early years can go a long way to shape them into better and confident individuals. Unfortunately, accessibility of the etiquette learning and public speaking skill education is not standardized in pre-primary or primary level and most of the time embedding into the kindergarten curriculum is next to nil. All young children should be provided with equal opportunity to learn these soft skills which are essential for finding their place in job market.

Keywords: Early Childhood Learning, , public speaking, , confidence building, , innovative learning

Procedia PDF Downloads 111