Search results for: virtual electrode
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1804

Search results for: virtual electrode

184 Exploring Multimodal Communication: Intersections of Language, Gesture, and Technology

Authors: Rasha Ali Dheyab

Abstract:

In today's increasingly interconnected and technologically-driven world, communication has evolved beyond traditional verbal exchanges. This paper delves into the fascinating realm of multimodal communication, a dynamic field at the intersection of linguistics, gesture studies, and technology. The study of how humans convey meaning through a combination of spoken language, gestures, facial expressions, and digital platforms has gained prominence as our modes of interaction continue to diversify. This exploration begins by examining the foundational theories in linguistics and gesture studies, tracing their historical development and mutual influences. It further investigates the role of nonverbal cues, such as gestures and facial expressions, in augmenting and sometimes even altering the meanings conveyed by spoken language. Additionally, the paper delves into the modern technological landscape, where emojis, GIFs, and other digital symbols have emerged as new linguistic tools, reshaping the ways in which we communicate and express emotions. The interaction between traditional and digital modes of communication is a central focus of this study. The paper investigates how technology has not only introduced new modes of expression but has also influenced the adaptation of existing linguistic and gestural patterns in online discourse. The emergence of virtual reality and augmented reality environments introduces yet another layer of complexity to multimodal communication, offering new avenues for studying how humans navigate and negotiate meaning in immersive digital spaces. Through a combination of literature review, case studies, and theoretical analysis, this paper seeks to shed light on the intricate interplay between language, gesture, and technology in the realm of multimodal communication. By understanding how these diverse modes of expression intersect and interact, we gain valuable insights into the ever-evolving nature of human communication and its implications for fields ranging from linguistics and psychology to human-computer interaction and digital anthropology.

Keywords: multimodal communication, linguistics ., gesture studies., emojis., verbal communication., digital

Procedia PDF Downloads 71
183 A Preliminary Kinematic Comparison of Vive and Vicon Systems for the Accurate Tracking of Lumbar Motion

Authors: Yaghoubi N., Moore Z., Van Der Veen S. M., Pidcoe P. E., Thomas J. S., Dexheimer B.

Abstract:

Optoelectronic 3D motion capture systems, such as the Vicon kinematic system, are widely utilized in biomedical research to track joint motion. These systems are considered powerful and accurate measurement tools with <2 mm average error. However, these systems are costly and may be difficult to implement and utilize in a clinical setting. 3D virtual reality (VR) is gaining popularity as an affordable and accessible tool to investigate motor control and perception in a controlled, immersive environment. The HTC Vive VR system includes puck-style trackers that seamlessly integrate into its VR environments. These affordable, wireless, lightweight trackers may be more feasible for clinical kinematic data collection. However, the accuracy of HTC Vive Trackers (3.0), when compared to optoelectronic 3D motion capture systems, remains unclear. In this preliminary study, we compared the HTC Vive Tracker system to a Vicon kinematic system in a simulated lumbar flexion task. A 6-DOF robot arm (SCORBOT ER VII, Eshed Robotec/RoboGroup, Rosh Ha’Ayin, Israel) completed various reaching movements to mimic increasing levels of hip flexion (15°, 30°, 45°). Light reflective markers, along with one HTC Vive Tracker (3.0), were placed on the rigid segment separating the elbow and shoulder of the robot. We compared position measures simultaneously collected from both systems. Our preliminary analysis shows no significant differences between the Vicon motion capture system and the HTC Vive tracker in the Z axis, regardless of hip flexion. In the X axis, we found no significant differences between the two systems at 15 degrees of hip flexion but minimal differences at 30 and 45 degrees, ranging from .047 cm ± .02 SE (p = .03) at 30 degrees hip flexion to .194 cm ± .024 SE (p < .0001) at 45 degrees of hip flexion. In the Y axis, we found a minimal difference for 15 degrees of hip flexion only (.743 cm ± .275 SE; p = .007). This preliminary analysis shows that the HTC Vive Tracker may be an appropriate, affordable option for gross motor motion capture when the Vicon system is not available, such as in clinical settings. Further research is needed to compare these two motion capture systems in different body poses and for different body segments.

Keywords: lumbar, vivetracker, viconsystem, 3dmotion, ROM

Procedia PDF Downloads 85
182 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study

Authors: Catherine Mary Abou-Zaid

Abstract:

This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.

Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education

Procedia PDF Downloads 302
181 Studies of the Reaction Products Resulted from Glycerol Electrochemical Conversion under Galvanostatic Mode

Authors: Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Patrick Cognet, Yolande Peres, Mohammed Ajeel

Abstract:

In recent years, with the decreasing supply of fossil fuel, renewable energy has received a significant demand. Biodiesel which is well known as vegetable oil based fatty acid methyl ester is an alternative fuel for diesel. It can be produced from transesterification of vegetable oils, such as palm oil, sunflower oil, rapeseed oil, etc., with methanol. During the transesterification process, crude glycerol is formed as a by-product, resulting in 10% wt of the total biodiesel production. To date, due to the fast growing of biodiesel production in worldwide, the crude glycerol supply has also increased rapidly and resulted in a significant price drop for glycerol. Therefore, extensive research has been developed to use glycerol as feedstock to produce various added-value chemicals, such as tartronic acid, mesoxalic acid, glycolic acid, glyceric acid, propanediol, acrolein etc. The industrial processes that usually involved are selective oxidation, biofermentation, esterification, and hydrolysis. However, the conversion of glycerol into added-value compounds by electrochemical approach is rarely discussed. Currently, the approach is mainly focused on the electro-oxidation study of glycerol under potentiostatic mode for cogenerating energy with other chemicals. The electro-organic synthesis study from glycerol under galvanostatic mode is seldom reviewed. In this study, the glycerol was converted into various added-value compounds by electrochemical method under galvanostatic mode. This work aimed to study the possible compounds produced from glycerol by electrochemical technique in a one-pot electrolysis cell. The electro-organic synthesis study from glycerol was carried out in a single compartment reactor for 8 hours, over the platinum cathode and anode electrodes under acidic condition. Various parameters such as electric current (1.0 A to 3.0 A) and reaction temperature (27 °C to 80 °C) were evaluated. The products obtained were characterized by using gas chromatography-mass spectroscopy equipped with an aqueous-stable polyethylene glycol stationary phase column. Under the optimized reaction condition, the glycerol conversion achieved as high as 95%. The glycerol was successfully converted into various added-value chemicals such as ethylene glycol, glycolic acid, glyceric acid, acetaldehyde, formic acid, and glyceraldehyde; given the yield of 1%, 45%, 27%, 4%, 0.7% and 5%, respectively. Based on the products obtained from this study, the reaction mechanism of this process is proposed. In conclusion, this study has successfully converted glycerol into a wide variety of added-value compounds. These chemicals are found to have high market value; they can be used in the pharmaceutical, food and cosmetic industries. This study effectively opens a new approach for the electrochemical conversion of glycerol. For further enhancement on the product selectivity, electrode material is an important parameter to be considered.

Keywords: biodiesel, glycerol, electrochemical conversion, galvanostatic mode

Procedia PDF Downloads 185
180 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 421
179 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 298
178 Dematerialized Beings in Katherine Dunn's Geek Love: A Corporeal and Ethical Study under Posthumanities

Authors: Anum Javed

Abstract:

This study identifies the dynamical image of human body that continues its metamorphosis in the virtual field of reality. It calls attention to the ways where humans start co-evolving with other life forms; technology in particular and are striving to establish a realm outside the physical framework of matter. The problem exceeds the area of technological ethics by explicably and explanatorily entering the space of literary texts and criticism. Textual analysis of Geek Love (1989) by Katherine Dunn is adjoined with posthumanist perspectives of Pramod K. Nayar to beget psycho-somatic changes in man’s nature of being. It uncovers the meaning people give to their experiences in this budding social and cultural phenomena of material representation tied up with personal practices and technological innovations. It also observes an ethical, physical and psychological reassessment of man within the context of technological evolutions. The study indicates the elements that have rendered morphological freedom and new materialism in man’s consciousness. Moreover this work is inquisitive of what it means to be a human in this time of accelerating change where surgeries, implants, extensions, cloning and robotics have shaped a new sense of being. It attempts to go beyond individual’s body image and explores how objectifying media and culture have influenced people’s judgement of others on new material grounds. It further argues a decentring of the glorified image of man as an independent entity because of his energetic partnership with intelligent machines and external agents. The history of the future progress of technology is also mentioned. The methodology adopted is posthumanist techno-ethical textual analysis. This work necessitates a negotiating relationship between man and technology in order to achieve harmonic and balanced interconnected existence. The study concludes by recommending a call for an ethical set of codes to be cultivated for the techno-human habituation. Posthumanism ushers a strong need of adopting new ethics within the terminology of neo-materialist humanism.

Keywords: corporeality, dematerialism, human ethos, posthumanism

Procedia PDF Downloads 131
177 Using ePortfolios to Mapping Social Work Graduate Competencies

Authors: Cindy Davis

Abstract:

Higher education is changing globally and there is increasing pressure from professional social work accreditation bodies for academic programs to demonstrate how students have successfully met mandatory graduate competencies. As professional accreditation organizations increase their demand for evidence of graduate competencies, strategies to document and recording learning outcomes becomes increasingly challenging for academics and students. Studies in higher education have found support for the pedagogical value of ePortfolios, a flexible personal learning space that is owned by the student and include opportunity for assessment, feedback and reflection as well as a virtual space to store evidence of demonstration of professional competencies and graduate attributes. Examples of institutional uses of ePortfolios include e-administration of a diverse student population, assessment of student learning, and the demonstration of graduate attributes attained and future student career preparation. The current paper presents a case study on the introduction of ePortfolios for social work graduates in Australia as part of an institutional approach to technology-enhanced learning and e-learning. Social work graduates were required to submit an ePortfolio hosted on PebblePad. The PebblePad platform was selected because it places the student at the center of their learning whilst providing powerful tools for staff to structure, guide and assess that learning. The ePortofolio included documentation and evidence of how the student met each graduate competency as set out by the social work accreditation body in Australia (AASW). This digital resource played a key role in the process of external professional accreditation by clearly documenting and evidencing how students met required graduate competencies. In addition, student feedback revealed a positive outcome on how this resource provided them with a consolidation of their learning experiences and assisted them in obtaining employment post-graduation. There were also significant institutional factors that were key to successful implementation such as investment in the digital technology, capacity building amongst academics, and technical support for staff and students.

Keywords: accreditation, social work, teaching, technology

Procedia PDF Downloads 128
176 An Online Questionnaire Investigating UK Mothers' Experiences of Bottle Refusal by Their Breastfed Baby

Authors: Clare Maxwell, Lorna Porcellato, Valerie Fleming, Kate Fleming

Abstract:

A review of global online forums and social media reveals large numbers of mothers experiencing bottle refusal by their breastfed baby. It is difficult to determine precise numbers due to a lack of data, however, established virtual communities illustrate thousands of posts in relation to the issue. Mothers report various negative consequences of bottle refusal including delaying their return to work, time and financial outlay spent on methods to overcome it and experiencing stress, anxiety, and resentment of breastfeeding. A search of the literature revealed no studies being identified, and due to a lack of epidemiological data, a study investigating mother’s experiences of bottle refusal by their breastfed baby was undertaken. The aim of the study was to investigate UK mothers’ experiences of bottle refusal by their breastfed baby. Data were collected using an online questionnaire collecting quantitative and qualitative data. 841 UK mothers who had experienced or were experiencing bottle refusal by their breastfed baby completed the questionnaire. Data were analyzed using descriptive statistics and non-parametric testing. The results showed 61% (516/840) of mothers reported their breastfed baby was still refusing/had never accepted a bottle, with 39% (324/840) reporting their baby had eventually accepted. The most frequently reported reason to introduce a bottle was so partner/family could feed the baby 59% (499/839). 75% (634/841) of mothers intended their baby to feed on a bottle ‘occasionally’. Babies who accepted a bottle were more likely to be older at 1st attempt to introduce one than those babies who refused (Mdn = 12 weeks v 8 weeks, n = 286) (p = <0.001). Length of time taken to acceptance was 9 weeks (Mdn = 9, IQR = 18, R = 103.9, n = 306) with the older the baby was at 1st attempt to introduce a bottle being associated with a shorter length of time to acceptance (p = < 0.002). 60% (500/841) of mothers stated that none of the methods they used had worked. 26% (222/841) of mothers reported bottle refusal had had a negative impact upon their overall breastfeeding experience. 47% (303/604) reported they would have tried to introduce a bottle earlier to prevent refusal. This study provides a unique insight into the scenario of bottle refusal by breastfed babies. It highlights that bottle refusal by breastfed babies is a significant issue, which requires recognition from those communicating breastfeeding information to mothers.

Keywords: bottle feeding, bottle refusal, breastfeeding, infant feeding

Procedia PDF Downloads 149
175 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters

Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng

Abstract:

Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.

Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum

Procedia PDF Downloads 148
174 Arterial Compliance Measurement Using Split Cylinder Sensor/Actuator

Authors: Swati Swati, Yuhang Chen, Robert Reuben

Abstract:

Coronary stents are devices resembling the shape of a tube which are placed in coronary arteries, to keep the arteries open in the treatment of coronary arterial diseases. Coronary stents are routinely deployed to clear atheromatous plaque. The stent essentially applies an internal pressure to the artery because its structure is cylindrically symmetrical and this may introduce some abnormalities in final arterial shape. The goal of the project is to develop segmented circumferential arterial compliance measuring devices which can be deployed (eventually) in vivo. The segmentation of the device will allow the mechanical asymmetry of any stenosis to be assessed. The purpose will be to assess the quality of arterial tissue for applications in tailored stents and in the assessment of aortic aneurism. Arterial distensibility measurement is of utmost importance to diagnose cardiovascular diseases and for prediction of future cardiac events or coronary artery diseases. In order to arrive at some generic outcomes, a preliminary experimental set-up has been devised to establish the measurement principles for the device at macro-scale. The measurement methodology consists of a strain gauge system monitored by LABVIEW software in a real-time fashion. This virtual instrument employs a balloon within a gelatine model contained in a split cylinder with strain gauges fixed on it. The instrument allows automated measurement of the effect of air-pressure on gelatine and measurement of strain with respect to time and pressure during inflation. Compliance simple creep model has been applied to the results for the purpose of extracting some measures of arterial compliance. The results obtained from the experiments have been used to study the effect of air pressure on strain at varying time intervals. The results clearly demonstrate that with decrease in arterial volume and increase in arterial pressure, arterial strain increases thereby decreasing the arterial compliance. The measurement system could lead to development of portable, inexpensive and small equipment and could prove to be an efficient automated compliance measurement device.

Keywords: arterial compliance, atheromatous plaque, mechanical symmetry, strain measurement

Procedia PDF Downloads 265
173 Navigating Life Transitions for Young People with Vision Impairment: A Community-Based Participatory Research Approach to Accessibility and Diversity

Authors: Aikaterini Tavoulari, Michael Proulx, Karin Petrini

Abstract:

Objective: This study aims to explore the unique challenges faced by young individuals with vision impairment (VI) during key life transitions, utilizing a community-based participatory research (CBPR) approach to identify limitations and positive aspects of existing support systems, with a focus on accessibility and diversity. Design: The study employs a qualitative CBPR design, engaging young participants with VI through online and in-person working groups over six months, prioritizing their active involvement and diverse perspectives. Methods: Twenty-one young individuals with VI from across the UK and with different VI conditions were recruited to participate in the study via a climbing and virtual reality event and stakeholders’ support. Data collection methods included open discussions, forum exchanges, and qualitative questionnaires. The data were analyzed with NVivo using inductive thematic analysis to identify key themes and patterns related to the challenges and experiences of life transitions for this diverse population. Results: The analysis revealed barriers to accessibility, such as assumptions about what a person with VI can do, inaccessibility to material, noisy environments, and insufficient training with assistive technologies. Enablers included guidance from diverse professionals and peers, multisensory approaches (beyond tactile), and peer collaborations. This study underscores the need for developing accessible and tailored strategies together with these young people to address the specific needs of this diverse population during critical life transitions (e.g., to independent living, employment and higher education). Conclusion: Engaging and co-designing effective approaches and tools with young people with VI is key to tackling the specific accessibility barriers they encounter. These approaches should be targeted at different transitional periods of their life journey, promoting diversity and inclusion.

Keywords: vision impairement, life transitions, qualitative research, community-based participatory design, accessibility

Procedia PDF Downloads 36
172 Digital Twin for University Campus: Workflow, Applications and Benefits

Authors: Frederico Fialho Teixeira, Islam Mashaly, Maryam Shafiei, Jurij Karlovsek

Abstract:

The ubiquity of data gathering and smart technologies, advancements in virtual technologies, and the development of the internet of things (IoT) have created urgent demands for the development of frameworks and efficient workflows for data collection, visualisation, and analysis. Digital twin, in different scales of the city into the building, allows for bringing together data from different sources to generate fundamental and illuminating insights for the management of current facilities and the lifecycle of amenities as well as improvement of the performance of current and future designs. Over the past two decades, there has been growing interest in the topic of digital twin and their applications in city and building scales. Most such studies look at the urban environment through a homogeneous or generalist lens and lack specificity in particular characteristics or identities, which define an urban university campus. Bridging this knowledge gap, this paper offers a framework for developing a digital twin for a university campus that, with some modifications, could provide insights for any large-scale digital twin settings like towns and cities. It showcases how currently unused data could be purposefully combined, interpolated and visualised for producing analysis-ready data (such as flood or energy simulations or functional and occupancy maps), highlighting the potential applications of such a framework for campus planning and policymaking. The research integrates campus-level data layers into one spatial information repository and casts light on critical data clusters for the digital twin at the campus level. The paper also seeks to raise insightful and directive questions on how digital twin for campus can be extrapolated to city-scale digital twin. The outcomes of the paper, thus, inform future projects for the development of large-scale digital twin as well as urban and architectural researchers on potential applications of digital twin in future design, management, and sustainable planning, to predict problems, calculate risks, decrease management costs, and improve performance.

Keywords: digital twin, smart campus, framework, data collection, point cloud

Procedia PDF Downloads 59
171 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 131
170 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 311
169 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 119
168 Effectiveness of a Pasifika Women’s Diabetes Wellness Program (PWDWP) – Co-design With, by and for MāOri and Pasifika Women Living in Queensland

Authors: Heena Akbar, Winnie Niumata, Danielle Gallegos

Abstract:

Type 2 diabetes is a significant public health problem for Māori and Pasifika communities in Queensland, who are experiencing a higher burden of morbidity and mortality from the condition. Despite this higher burden, there are few initiatives that are culturally tailored to improve prevention and management. Modification of personal behaviors through women’s wellness programs aimed at early intervention has been shown to reduce the risk of developing complications in established type 2 diabetes and may reduce hospitalization rates from preventable complications related to this disease. The 24-week Pasifika Women’s Diabetes Wellness Program (PWDWP) was culturally co-designed and co-developed with Māori and Pasifika women with type 2 diabetes through a community-academia partnership in Queensland. Underpinned by Social Cognitive Theory and the Indigenous Pacific Health frameworks to include family culture & spirituality and integrating a collectivist and whānau (family) centered approach to self-care, the program takes into consideration the cultural shame associated with acknowledging the disease and tailors the interventions using talanoa (storytelling or conversation in a relational context) as the key strategy to come to a shared meaning for behavior change. The pilot trial is a 12-week intervention followed by a 12-week follow-up period conducted with 50 women with type 2 diabetes, 25 women who will receive the intervention and 25 women who will receive usual care. The pilot program provides in-person and virtual access to culturally supported prevention and self-management of Māori and Pasifika women with type 2 diabetes with the aim to improve healthy lifestyles and reduce late hospital presentations from diabetes-related complications for better diabetes-related outcomes. This study will test and evaluate the effectiveness of the PWDWP pilot trial in partnership with Māori & Pasifika community organizations and key stakeholders for improved glycated hemoglobin (HbA1c) levels associated with poor management of type 2 diabetes.

Keywords: culturally co-designed intervention, Indigenous methodology, Māori and Pasifika communities, type 2 diabetes self-management

Procedia PDF Downloads 73
167 An Educational Electronic Health Record with a Configurable User Interface

Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao

Abstract:

Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.

Keywords: education, EHR, usability, configurable

Procedia PDF Downloads 146
166 A Qualitative Examination of the Impact of COVID-19 on the Wellbeing of Undergraduate Students in Ontario

Authors: Soumya Mishra, Elena Neiterman

Abstract:

Aligned with the growing interest in the impact of the pandemic on academic experiences of university students, this study aimed to examine the challenges Canadian undergraduate students experienced during the university closures due to COVID-19. Using qualitative methodological approach, the study utilized semi-structured interviews conducted with 20 undergraduate students enrolled in an Ontario university to explore their thoughts and experience regarding online learning during the peak of the COVID-19 pandemic, from January 2021 to March 2021. The interviews yielded four major themes with the following associated subthemes: Personal Challenges Associated with Adapting to the Pandemic (Change in the Type of Stress Experienced, Unique Impact on Certain Groups of Students, Decreased Motivation, Crucial Role of Resilience), Social Challenges Associated with Adapting to the Pandemic (Increased Loneliness, Challenges Faced while Communicating, Perception of Group work, Role of Living Conditions), Challenges associated with Accessing University Resources (Crucial Role of Professors, Perception of Virtual Events, Importance of Physical Spaces). Overall, the analysis showed that the COVID-19 pandemic fostered resilience and psychological flexibility amongst all students. However, the mental health and social wellbeing of students deteriorated during the COVID-19 pandemic and they reported experiencing chronic stress, anxiety and loneliness. International students, first year and final year students experienced a unique set of challenges. It was hard for participants in our study to make strong new connections with their classmates and maintain existing friendships with their peers. The importance of professors in facilitating learning was amplified in the online environment due to the lack of in-person interaction with other students. Despite these challenges, most participants reported that they received high grades during online learning. The findings from this study could be helpful for organizations and individuals working towards fostering the wellbeing of undergraduate students. They can also help in making post-secondary institutions more resilient to future emergencies by creating contingency plans regarding online instructions and risk management techniques.

Keywords: Canadian, COVID-19, university students, wellbeing

Procedia PDF Downloads 85
165 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 273
164 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine

Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot

Abstract:

Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.

Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns

Procedia PDF Downloads 140
163 Screening of Phytochemicals Compounds from Chasmanthera dependens and Carissa edulis as Potential Inhibitors of Carbonic Anhydrases CA II (3HS4) Receptor using a Target-Based Drug Design

Authors: Owonikoko Abayomi Dele

Abstract:

Epilepsy is an unresolved disease that needs urgent attention. It is a brain disorder that affects over sixty-five (65) million people around the globe. Despite the availability of commercial anti-epileptic drugs, the war against this unmet condition is yet to be resolved. Most epilepsy patients are resistant to available anti-epileptic medications thus the need for affordable novel therapy against epilepsy is a necessity. Numerous phytochemicals have been reported for their potency, efficacy and safety as therapeutic agents against many diseases. This study investigated 99 isolated phytochemicals from Chasmanthera dependens and Carissa edulis against carbonic anhydrase (ii) drug target. The absorption, distribution, metabolism, excretion and toxicity (ADMET) of the isolated compounds were examined using admet SAR-2 web server while Swiss ADME was used to analyze the oral bioavailability, drug-likeness and lead-likeness properties of the selected leads. PASS web server was used to predict the biological activities of selected leads while other important physicochemical properties and interactions of the selected leads with the active site of the target after successful molecular docking simulation with the pyrx virtual screening tool were also examined. The results of these study identified seven lead compounds; C49- alpha-carissanol (-7.6 kcal/mol), C13- Catechin (-7.4 kcal/mol), C45- Salicin (-7.4 kcal/mol), C6- Bisnorargemonine (-7.3 kcal/mol), C36- Pallidine (-7.1 kcal/mol), S4- Lacosamide (-7.1 kcal/mol), and S7- Acetazolamide (-6.4 kcal/mol) for CA II (3HS4 receptor). These leads compounds are probable inhibitors of this drug target due to the observed good binding affinities and favourable interactions with the active site of the drug target, excellent ADMET profiles, PASS Properties, drug-likeness, lead-likeness and oral bioavailability properties. The identified leads have better binding energies as compared to the binding energies of the two standards. Thus, seven identified lead compounds can be developed further towards the development of new anti-epileptic medications.

Keywords: drug-likeness, phytochemicals, carbonic anhydrases, metalloeazymes, active site, ADMET

Procedia PDF Downloads 29
162 The Role of Emotional Intelligence in the Manager's Psychophysiological Activity during a Performance-Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Emotional intelligence (EI) consists of skills for monitoring own emotions and emotions of others, skills for discriminating different emotions, and skills for using this information in thinking and actions. EI enhances, for example, work outcomes and organizational climate. We suggest that the role and manifestations of EI should also be studied in real leadership situations, especially during the emotional, social interaction. Leadership is essentially a process to influence others for reaching a certain goal. This influencing happens by managerial processes and computer-mediated communication (e.g. e-mail) but also by face-to-face, where facial expressions have a significant role in conveying emotional information. Persons with high EI are typically perceived more positively, and they have better social skills. We hypothesize, that during social interaction high EI enhances the ability to detect other’s emotional state and controlling own emotional expressions. We suggest, that emotionally intelligent leader’s experience less stress during social leadership situations, since they have better skills in dealing with the related emotional work. Thus the high-EI leaders would be more able to enjoy these situations, but also be more efficient in choosing appropriate expressions for building constructive dialogue. We suggest, that emotionally intelligent leaders show more positive emotional expressions than low-EI leaders. To study these hypotheses we observed performance review discussions of 40 leaders (24 female) with 78 (45 female) of their followers. Each leader held a discussion with two followers. Psychophysiological methods were chosen because they provide objective and continuous data from the whole duration of the discussions. We recorded sweating of the hands (electrodermal activation) by electrodes placed to the fingers of the non-dominant hand to assess the stress-related physiological arousal of the leaders. In addition, facial electromyography was recorded from cheek (zygomaticus major, activated during e.g. smiling) and periocular (orbicularis oculi, activated during smiling) muscles using electrode pairs placed on the left side of the face. Leader’s trait EI was measured with a 360 questionnaire, filled by each leader’s followers, peers, managers and by themselves. High-EI leaders had less sweating of the hands (p = .007) than the low-EI leaders. It is thus suggested that the high-EI leaders experienced less physiological stress during the discussions. Also, high scores in the factor “Using of emotions” were related to more facial muscle activation indicating positive emotional expressions (cheek muscle: p = .048; periocular muscle: p = .076, almost statistically significant). The results imply that emotionally intelligent managers are positively relaxed during s social leadership situations such as a performance review discussion. The current study also highlights the importance of EI in face-to-face social interaction, given the central role facial expressions have in interaction situations. The study also offers new insight to the biological basis of trait EI. It is suggested that the identification, forming, and intelligently using of facial expressions are skills that could be trained during leadership development courses.

Keywords: emotional intelligence, leadership, performance review discussion, psychophysiology, social interaction

Procedia PDF Downloads 238
161 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 159
160 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 170
159 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays

Authors: Maher Z. Mohammed, Barry G. Clarke

Abstract:

As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.

Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio

Procedia PDF Downloads 154
158 Cfd Simulation for Urban Environment for Evaluation of a Wind Energy Potential of a Building or a New Urban Planning

Authors: David Serero, Loic Couton, Jean-Denis Parisse, Robert Leroy

Abstract:

This paper presents an analysis method of airflow at the periphery of several typologies of architectural volumes. To understand the complexity of the urban environment on the airflows in the city, we compared three sites at different architectural scale. The research sets a method to identify the optimal location for the installation of wind turbines on the edges of a building and to achieve an improvement in the performance of energy extracted by precise localization of an accelerating wing called “aero foil”. The objective is to define principles for the installation of wind turbines and natural ventilation design of buildings. Instead of theoretical winds analysis, we combined numerical aeraulic simulations using STAR CCM + software with wind data, over long periods of time (greater than 1 year). If airflows computer fluid analysis (CFD) simulation of buildings are current, we have calibrated a virtual wind tunnel with wind data using in situ anemometers (to establish localized cartography of urban winds). We can then develop a complete volumetric model of the behavior of the wind on a roof area, or an entire urban island. With this method, we can categorize: - the different types of wind in urban areas and identify the minimum and maximum wind spectrum, - select the type of harvesting devices - fixing to the roof of a building, - the altimetry of the device in relation to the levels of the roofs - The potential nuisances around. This study is carried out from the recovery of a geolocated data flow, and the connection of this information with the technical specifications of wind turbines, their energy performance and their speed of engagement. Thanks to this method, we can thus define the characteristics of wind turbines to maximize their performance in urban sites and in a turbulent airflow regime. We also study the installation of a wind accelerator associated with buildings. The “aerofoils which are integrated are improvement to control the speed of the air, to orientate it on the wind turbine, to accelerate it and to hide, thanks to its profile, the device on the roof of the building.

Keywords: wind energy harvesting, wind turbine selection, urban wind potential analysis, CFD simulation for architectural design

Procedia PDF Downloads 137
157 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 37
156 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease

Authors: Vaishali Patil, Neeraj Masand

Abstract:

In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.

Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR

Procedia PDF Downloads 240
155 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells

Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau

Abstract:

Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.

Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability

Procedia PDF Downloads 60