Search results for: multiple roman domination function
8056 Authentication and Traceability of Meat Products from South Indian Market by Species-Specific Polymerase Chain Reaction
Authors: J. U. Santhosh Kumar, V. Krishna, Sebin Sebastian, G. S. Seethapathy, G. Ravikanth, R. Uma Shaanker
Abstract:
Food is one of the basic needs of human beings. It requires the normal function of the body part and a healthy growth. Recently, food adulteration increases day by day to increase the quantity and make more benefit. Animal source foods can provide a variety of micronutrients that are difficult to obtain in adequate quantities from plant source foods alone. Particularly in the meat industry, products from animals are susceptible targets for fraudulent labeling due to the economic profit that results from selling cheaper meat as meat from more profitable and desirable species. This work presents an overview of the main PCR-based techniques applied to date to verify the authenticity of beef meat and meat products from beef species. We were analyzed 25 market beef samples in South India. We examined PCR methods based on the sequence of the cytochrome b gene for source species identification. We found all sample were sold as beef meat as Bos Taurus. However, interestingly Male meats are more valuable high price compare to female meat, due to this reason most of the markets samples are susceptible. We were used sex determination gene of cattle like TSPY(Y-encoded, testis-specific protein TSPY is a Y-specific gene). TSPY homologs exist in several mammalian species, including humans, horses, and cattle. This gene is Y coded testis protein genes, which only amplify the male. We used multiple PCR products form species-specific “fingerprints” on gel electrophoresis, which may be useful for meat authentication. Amplicons were obtained only by the Cattle -specific PCR. We found 13 market meat samples sold as female beef samples. These results suggest that the species-specific PCR methods established in this study would be useful for simple and easy detection of adulteration of meat products.Keywords: authentication, meat products, species-specific, TSPY
Procedia PDF Downloads 3788055 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash
Authors: H. Al-Baghli, F. Al-Asfour
Abstract:
The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.Keywords: warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives
Procedia PDF Downloads 1288054 The Relationship between Corporate Governance and Intellectual Capital Disclosure: Malaysian Evidence
Authors: Rabiaal Adawiyah Shazali, Corina Joseph
Abstract:
The disclosure of Intellectual Capital (IC) information is getting more vital in today’s era of a knowledge-based economy. Companies are advised by accounting bodies to enhance IC disclosure which complements the conventional financial disclosures. There are no accounting standards for Intellectual Capital Disclosure (ICD), therefore the disclosure is entirely voluntary. Hence, this study aims to investigate the extent of ICD and to examine the relationship between corporate governance and ICD in Malaysia. This study employed content analysis of 100 annual reports by the top 100 public listed companies in Malaysia during 2012. The uniqueness of this study lies on its underpinning theory used where it applies the institutional isomorphism theory to support the effect of the attributes of corporate governance towards ICD. In order to achieve the stated objective, multiple regression analysis were employed to conduct this study. From the descriptive statistics, it was concluded that public listed companies in Malaysia have increased their awareness towards the importance of ICD. Furthermore, results from the multiple regression analysis confirmed that corporate governance affects the company’s ICD where the frequency of audit committee meetings and the board size has positively influenced the level of ICD in companies. Findings from this study would provide an incentive for companies in Malaysia to enhance the disclosure of IC. In addition, this study would assist Bursa Malaysia and other regulatory bodies to come up with a proper guideline for the disclosure of IC.Keywords: annual report, content analysis, corporate governance, intellectual capital disclosure
Procedia PDF Downloads 2198053 Case of A Huge Retroperitoneal Abscess Spanning from the Diaphragm to the Pelvic Brim
Authors: Christopher Leung, Tony Kim, Rebecca Lendzion, Scott Mackenzie
Abstract:
Retroperitoneal abscesses are a rare but serious condition with often delayed diagnosis, non-specific symptoms, multiple causes and high morbidity/mortality. With the advent of more readily available cross-sectional imaging, retroperitoneal abscesses are treated earlier and better outcomes are achieved. Occasionally, a retroperitoneal abscess is present as a huge retroperitoneal abscess, as evident in this 53-year-old male. With a background of chronic renal disease and left partial nephrectomy, this gentleman presented with a one-month history of left flank pain without any other symptoms, including fevers or abdominal pain. CT abdomen and pelvis demonstrated a huge retroperitoneal abscess spanning from the diaphragm, abutting the spleen, down to the iliopsoas muscle and abutting the iliac vessels at the pelvic brim. This large retroperitoneal abscess required open drainage as well as drainage by interventional radiology. A long course of intravenous antibiotics and multiple drainages was required to drain the abscess. His blood culture and fluid culture grew Proteus species suggesting a urinary source, likely from his non-functioning kidney, which had a partial nephrectomy. Such a huge retroperitoneal abscess has rarely been described in the literature. The learning point here is that the basic principle of source control and antibiotics is paramount in treating retroperitoneal abscesses regardless of the size of the abscess.Keywords: retroperitoneal abscess, retroperitoneal mass, sepsis, genitourinary infection
Procedia PDF Downloads 2258052 An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders
Authors: Arjun Paul, Adrijit Goswami
Abstract:
In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters.Keywords: fuzzy deterioration rate, price discount on backorder, ramp type demand, shortage, time varying holding cost
Procedia PDF Downloads 2028051 Effect of Cumulative Dissipated Energy on Short-Term and Long-Term Outcomes after Uncomplicated Cataract Surgery
Authors: Palaniraj Rama Raj, Himeesh Kumar, Paul Adler
Abstract:
Purpose: To investigate the effect of ultrasound energy, expressed as cumulative dissipated energy (CDE), on short and long-term outcomes after uncomplicated cataract surgery by phacoemulsification. Methods: In this single-surgeon, two-center retrospective study, non-glaucomatous participants who underwent uncomplicated cataract surgery were investigated. Best-corrected visual acuity (BCVA) and intraocular pressure (IOP) were measured at 3 separate time points: pre-operative, Day 1 and ≥1 month. Anterior chamber (AC) inflammation and corneal odema (CO) were assessed at 2 separate time points: Pre-operative and Day 1. Short-term changes (Day 1) in BCVA, IOP, AC and CO and long-term changes (≥1 month) in BCVA and IOP were evaluated as a function of CDE using a multivariate multiple linear regression model, adjusting for age, gender, cataract type and grade, preoperative IOP, preoperative BCVA and duration of long-term follow-up. Results: 110 eyes from 97 non-glaucomatous participants were analysed. 60 (54.55%) were female and 50 (45.45%) were male. The mean (±SD) age was 73.40 (±10.96) years. Higher CDE counts were strongly associated with higher grades of sclerotic nuclear cataracts (p <0.001) and posterior subcapsular cataracts (p <0.036). There was no significant association between CDE counts and cortical cataracts. CDE counts also had a positive correlation with Day 1 CO (p <0.001). There was no correlation between CDE counts and Day 1 AC inflammation. Short-term and long-term changes in post-operative IOP did not demonstrate significant associations with CDE counts (all p >0.05). Though there was no significant correlation between CDE counts and short-term changes in BCVA, higher CDE counts were strongly associated with greater improvements in long-term BCVA (p = 0.011). Conclusion: Though higher CDE counts were strongly associated with higher grades of Day 1 postoperative CO, there appeared to be no detriment to long-term BCVA. Correspondingly, the strong positive correlation between CDE counts and long-term BCVA was likely reflective of the greater severity of underlying cataract type and grade. CDE counts were not associated with short-term or long-term postoperative changes in IOP.Keywords: cataract surgery, phacoemulsification, cumulative dissipated energy, CDE, surgical outcomes
Procedia PDF Downloads 1858050 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 508049 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships
Authors: Vijaya Dixit Aasheesh Dixit
Abstract:
Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.Keywords: learning curve, materials management, shipbuilding, sister ships
Procedia PDF Downloads 5048048 An Overbooking Model for Car Rental Service with Different Types of Cars
Authors: Naragain Phumchusri, Kittitach Pongpairoj
Abstract:
Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.Keywords: overbooking, car rental industry, revenue management, stochastic model
Procedia PDF Downloads 1758047 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 1458046 Executive Function and Attention Control in Bilingual and Monolingual Children: A Systematic Review
Authors: Zihan Geng, L. Quentin Dixon
Abstract:
It has been proposed that early bilingual experience confers a number of advantages in the development of executive control mechanisms. Although the literature provides empirical evidence for bilingual benefits, some studies also reported null or mixed results. To make sense of these contradictory findings, the current review synthesize recent empirical studies investigating bilingual effects on children’s executive function and attention control. The publication time of the studies included in the review ranges from 2010 to 2017. The key searching terms are bilingual, bilingualism, children, executive control, executive function, and attention. The key terms were combined within each of the following databases: ERIC (EBSCO), Education Source, PsycINFO, and Social Science Citation Index. Studies involving both children and adults were also included but the analysis was based on the data generated only by the children group. The initial search yielded 137 distinct articles. Twenty-eight studies from 27 articles with a total of 3367 participants were finally included based on the selection criteria. The selective studies were then coded in terms of (a) the setting (i.e., the country where the data was collected), (b) the participants (i.e., age and languages), (c) sample size (i.e., the number of children in each group), (d) cognitive outcomes measured, (e) data collection instruments (i.e., cognitive tasks and tests), and (f) statistic analysis models (e.g., t-test, ANOVA). The results show that the majority of the studies were undertaken in western countries, mainly in the U.S., Canada, and the UK. A variety of languages such as Arabic, French, Dutch, Welsh, German, Spanish, Korean, and Cantonese were involved. In relation to cognitive outcomes, the studies examined children’s overall planning and problem-solving abilities, inhibition, cognitive complexity, working memory (WM), and sustained and selective attention. The results indicate that though bilingualism is associated with several cognitive benefits, the advantages seem to be weak, at least, for children. Additionally, the nature of the cognitive measures was found to greatly moderate the results. No significant differences are observed between bilinguals and monolinguals in overall planning and problem-solving ability, indicating that there is no bilingual benefit in the cooperation of executive function components at an early age. In terms of inhibition, the mixed results suggest that bilingual children, especially young children, may have better conceptual inhibition measured in conflict tasks, but not better response inhibition measured by delay tasks. Further, bilingual children showed better inhibitory control to bivalent displays, which resembles the process of maintaining two language systems. The null results were obtained for both cognitive complexity and WM, suggesting no bilingual advantage in these two cognitive components. Finally, findings on children’s attention system associate bilingualism with heightened attention control. Together, these findings support the hypothesis of cognitive benefits for bilingual children. Nevertheless, whether these advantages are observable appears to highly depend on the cognitive assessments. Therefore, future research should be more specific about the cognitive outcomes (e.g., the type of inhibition) and should report the validity of the cognitive measures consistently.Keywords: attention, bilingual advantage, children, executive function
Procedia PDF Downloads 1868045 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study
Authors: Ashish Kumar Agrahari, Amit Kumar
Abstract:
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA
Procedia PDF Downloads 1498044 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 668043 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 808042 A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry
Authors: A. Alseiari, P. Farrell
Abstract:
Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.Keywords: Abu Dhabi Power Industry, TPM implementation, key barriers, organisational culture, critical success factors
Procedia PDF Downloads 2518041 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning
Authors: Pooja Khanal, Huaming Zhang
Abstract:
Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.Keywords: bug classification, bug labels, GitHub issues, semantic differences
Procedia PDF Downloads 2068040 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight
Procedia PDF Downloads 1548039 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer
Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack
Abstract:
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.Keywords: machine learning control, mixing layer, feedback control, model-free control
Procedia PDF Downloads 2288038 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 1488037 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria
Authors: Justin Orimisan Ijigbade
Abstract:
The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.Keywords: climate variability, honeybees production, humidity, rainfall and temperature
Procedia PDF Downloads 2758036 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix
Authors: Yoonjung An, Yongtae Park
Abstract:
Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design
Procedia PDF Downloads 6458035 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 1448034 Implementation of Quality Function Development to Incorporate Customer’s Value in the Conceptual Design Stage of a Construction Projects
Authors: Ayedh Alqahtani
Abstract:
Many construction firms in Saudi Arabia dedicated to building projects agree that the most important factor in the real estate market is the value that they can give to their customer. These firms understand the value of their client in different ways. Value can be defined as the size of the building project in relationship to the cost or the design quality of the materials utilized in finish work or any other features of building rooms such as the bathroom. Value can also be understood as something suitable for the money the client is investing for the new property. A quality tool is required to support companies to achieve a solution for the building project and to understand and manage the customer’s needs. Quality Function Development (QFD) method will be able to play this role since the main difference between QFD and other conventional quality management tools is QFD a valuable and very flexible tool for design and taking into the account the VOC. Currently, organizations and agencies are seeking suitable models able to deal better with uncertainty, and that is flexible and easy to use. The primary aim of this research project is to incorporate customer’s requirements in the conceptual design of construction projects. Towards this goal, QFD is selected due to its capability to integrate the design requirements to meet the customer’s needs. To develop QFD, this research focused upon the contribution of the different (significantly weighted) input factors that represent the main variables influencing QFD and subsequent analysis of the techniques used to measure them. First of all, this research will review the literature to determine the current practice of QFD in construction projects. Then, the researcher will review the literature to define the current customers of residential projects and gather information on customers’ requirements for the design of the residential building. After that, qualitative survey research will be conducted to rank customer’s needs and provide the views of stakeholder practitioners about how these needs can affect their satisfy. Moreover, a qualitative focus group with the members of the design team will be conducted to determine the improvements level and technical details for the design of residential buildings. Finally, the QFD will be developed to establish the degree of significance of the design’s solution.Keywords: quality function development, construction projects, Saudi Arabia, quality tools
Procedia PDF Downloads 1288033 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 3358032 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data
Authors: Flavia Smarrazzo
Abstract:
Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures
Procedia PDF Downloads 2878031 Enamel Structure Defect, the Rare Dental Anomaly: Isolated or Syndromic
Authors: Nehal F. Hassib, Rasha M. El Hossini, Inas M. Sayed, Maha R. Abouzeid, Nermeen A. Bayoumi, Aida M. Mosaad, Lamia K. Gadallah, Moataz Bellah A. T. Abdelbari, Heba A. El-Sayed, Hasnaa Elbendary, Ghada Abdel-Salam, Maha Zaki, Mostafa I. Mostafa, Mohamed S. Abdel-Hamid
Abstract:
Enamel, the outermost layer of the tooth crown, is the hardest dental tissue and serves as a protective barrier. Amelogenesis, the process of enamel formation, is regulated by multiple genes to ensure normal, defect-free enamel. Defective enamel manifests as hypoplasia or as amelogenesis imperfecta (AI), which may occur in isolation or as part of a syndrome. This study presents 29 patients from 18 unrelated families (16 females and 13 males) who exhibited distinctive enamel abnormalities. We conducted thorough clinical examinations and requested laboratory and radiological investigations. Blood samples were collected for molecular analysis, utilizing a targeted panel for known AI variants and whole exome sequencing for unknown variants. Eleven variants linked to enamel anomalies were identified: four genes associated with isolated AI (WDR72, ACP4, SLC24A4, and FAM83H) and seven associated with syndromic forms, including enamel renal syndrome (FAM20A), tricho-dento-osseous syndrome (DLX3), Jalili syndrome (CNNM4), and others linked to neurological and mitochondrial disorders, skeletal dysplasia, and peroxisome disorders. Abnormal oral and dental phenotypes in individuals may indicate serious inherited disorders. Enamel defects have significant implications for aesthetics, function, and patients' psychological well-being. Dental examination, alongside clinical and molecular investigations, is crucial for the accurate diagnosis and prediction of inherited conditions.Keywords: amelogenesis imperfecta, enamel defect, Enamel renal syndrome, DLX3, Jalili syndrome, WDR72, FAM83H, whole exome sequencing
Procedia PDF Downloads 308030 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease
Authors: Huafeng Wei
Abstract:
Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis
Procedia PDF Downloads 1878029 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method
Authors: Ritu Rani
Abstract:
In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development
Procedia PDF Downloads 1768028 Assessment of Serum Osteopontin, Osteoprotegerin and Bone-Specific Alp as Markers of Bone Turnover in Patients with Disorders of Thyroid Function in Nigeria, Sub-Saharan Africa
Authors: Oluwabori Emmanuel Olukoyejo, Ogra Victor Ogra, Bosede Amodu, Tewogbade Adeoye Adedeji
Abstract:
Background: Disorders of thyroid function are the second most common endocrine disorders worldwide, with a direct relationship with metabolic bone diseases. These metabolic bone complications are often subtle but manifest as bone pains and an increased risk of fractures. The gold standard for diagnosis, Dual Energy X-ray Absorptiometry (DEXA), is limited in this environment due to unavailability, cumbersomeness and cost. However, bone biomarkers have shown prospects in assessing alterations in bone remodeling, which has not been studied in this environment. Aim: This study evaluates serum levels of bone-specific alkaline phosphatase (bone-specific ALP), osteopontin and osteoprotegerin biomarkers of bone turnover in patients with disorders of thyroid function. Methods: This is a cross-sectional study carried out over a period of one and a half years. Forty patients with thyroid dysfunctions, aged 20 to 50 years, and thirty-eight age and sex-matched healthy euthyroid controls were included in this study. Patients were further stratified into hyperthyroid and hypothyroid groups. Bone-specific ALP, osteopontin, and osteoprotegerin, alongside serum total calcium, ionized calcium and inorganic phosphate, were assayed for all patients and controls. A self-administered questionnaire was used to obtain data on sociodemographic and medical history. Then, 5 ml of blood was collected in a plain bottle and serum was harvested following clotting and centrifugation. Serum samples were assayed for B-ALP, osteopontin, and osteoprotegerin using the ELISA technique. Total calcium and ionized calcium were assayed using an ion-selective electrode, while the inorganic phosphate was assayed with automated photometry. Results: The hyperthyroid and hypothyroid patient groups had significantly increased median serum B-ALP (30.40 and 26.50) ng/ml and significantly lower median OPG (0.80 and 0.80) ng/ml than the controls (10.81 and 1.30) ng/ml respectively, p < 0.05. However, serum osteopontin in the hyperthyroid group was significantly higher and significantly lower in the hypothyroid group when compared with the controls (11.00 and 2.10 vs 3.70) ng/ml, respectively, p < 0.05. Both hyperthyroid and hypothyroid groups had significantly higher mean serum total calcium, ionized calcium and inorganic phosphate than the controls (2.49 ± 0.28, 1.27 ± 0.14 and 1.33 ± 0.33) mmol/l and (2.41 ± 0.04, 1.20 ± 0.04 and 1.15 ± 0.16) mmol/l vs (2.27 ± 0.11, 1.17 ± 0.06 and 1.08 ± 0.16) mmol/l respectively, p < 0.05. Conclusion: Patients with disorders of thyroid function have metabolic imbalances of all the studied bone markers, suggesting a higher bone turnover. The routine bone markers will be an invaluable tool for monitoring bone health in patients with thyroid dysfunctions, while the less readily available markers can be introduced as supplementary tools. Moreover, bone-specific ALP, osteopontin and osteoprotegerin were found to be the strongest independent predictors of metabolic bone markers’ derangements in patients with thyroid dysfunctions.Keywords: metabolic bone diseases, biomarker, bone turnover, hyperthyroid, hypothyroid, euthyroid
Procedia PDF Downloads 408027 Rate of Force Development, Net Impulse and Modified Reactive Strength as Predictors of Volleyball Spike Jump Height among Young Elite Players
Authors: Javad Sarvestan, Zdenek Svoboda
Abstract:
Force-time (F-T) curvature characteristics are globally referenced as the main indicators of athletic jump performance. Nevertheless, to the best of authors’ knowledge, no investigation tried to deeply study the relationship between F-T curve variables and real-game jump performance among elite volleyball players. To this end, this study was designated to investigate the association between F-T curve variables, including movement timings, force, velocity, power, rate of force development (RFD), modified reactive strength index (RSImod), and net impulse with spike jump height during real-game circumstances. Twelve young elite volleyball players performed 3 countermovement jump (CMJ) and 3 spike jump in real-game circumstances with 1-minute rest intervals to prevent fatigue. Shapiro-Wilk statistical test illustrated the normality of data distribution, and Pearson’s product correlation test portrayed a significant correlation between CMJ height and peak RFD (0.85), average RFD (r=0.81), RSImod (r=0.88) and concentric net impulse (r=0.98), and also significant correlation between spike jump height and peak RFD (0.73), average RFD (r=0.80), RSImod (r=0.62) and concentric net impulse (r=0.71). Multiple regression analysis also reported that these factors have a strong contribution in predicting of CMJ (98%) and spike jump (77%) heights. Outcomes of this study confirm that the RFD, concentric net impulse, and RSImod values could precisely monitor and track the volleyball attackers’ explosive strength, muscular stretch-shortening cycle function efficiency, and ultimate spike jump height. To this effect, volleyball coaches and trainers are advised to have an in-depth focus on their athletes’ progression or the impacts of strength trainings by observing and chasing the F-T curve variables such as RFD, net impulse, and RSImod.Keywords: net impulse, reactive strength index, rate of force development, stretch-shortening cycle
Procedia PDF Downloads 139