Search results for: fuzzy multiple objective programming
10886 Neurocognitive and Executive Function in Cocaine Addicted Females
Authors: Gwendolyn Royal-Smith
Abstract:
Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function
Procedia PDF Downloads 40210885 Consideration of Uncertainty in Engineering
Authors: A. Mohammadi, M. Moghimi, S. Mohammadi
Abstract:
Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method
Procedia PDF Downloads 41810884 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: lidar, segmentation, clustering, tracking
Procedia PDF Downloads 42610883 Through-Bolt Moment Connection in HSS Column
Authors: Bardia Khafaf, Mehrdad Ghaffari, Amir Hussein Samakar
Abstract:
It is currently desirable to use Hollow Square Sections (HSS) in moment resistant structures in construction of building because they offer fewer restrictions for designing and more useful space while adhering to build design codes. This paper present a through bolt connection in HSS column. This connection meets building code standards that require the moment resistant connections to deflect and absorb energy resulting from gravity and seismic loads. Connection through bolts is installed and pretension to provide the connection strength needed to make a beam–column moment rigid zone. A rigid joint is typically used to resist lateral forces by holding columns and beams fixed in relation to one another. With bolted moment frames using HSS columns, a through–bolt connection could be used to secure the beam and end plate to the column. However, when multiple columns and beams are used to span a length of building, the use of through-bolts would necessities aligning multiple beams simultaneously to the columns. In the case of a linear span, the assembly process requires the holes of a first beam end plate to be aligned with through bolt holes in a column and aligning the holes of a second, opposing beam plate with the column through bolt, then inserting the through bolts in each hole for tightening with nuts and washers. In moment resistant building, a problem arises when assembling beams to columns where multiple beams and columns are required. Through bolt, moment connections are among the economical, practical and not difficult rigid steel connection for HSS column building. In this paper, the results of numerous analytical studies performed for moment structures with HSS columns with through bolt based on AISC standard codes are shown.Keywords: through bolt, moment resistant connection, HSS columns section, construction engineering
Procedia PDF Downloads 47110882 Effect of a Chatbot-Assisted Adoption of Self-Regulated Spaced Practice on Students' Vocabulary Acquisition and Cognitive Load
Authors: Ngoc-Nguyen Nguyen, Hsiu-Ling Chen, Thanh-Truc Lai Huynh
Abstract:
In foreign language learning, vocabulary acquisition has consistently posed challenges to learners, especially for those at lower levels. Conventional approaches often fail to promote vocabulary learning and ensure engaging experiences alike. The emergence of mobile learning, particularly the integration of chatbot systems, has offered alternative ways to facilitate this practice. Chatbots have proven effective in educational contexts by offering interactive learning experiences in a constructivist manner. These tools have caught attention in the field of mobile-assisted language learning (MALL) in recent years. This research is conducted in an English for Specific Purposes (ESP) course at the A2 level of the CEFR, designed for non-English majors. Participants are first-year Vietnamese students aged 18 to 20 at a university. This quasi-experimental study follows a pretest-posttest control group design over five weeks, with two classes randomly assigned as the experimental and control groups. The experimental group engages in chatbot-assisted spaced practice with SRL components, while the control group uses the same spaced practice without SRL. The two classes are taught by the same lecturer. Data are collected through pre- and post-tests, cognitive load surveys, and semi-structured interviews. The combination of self-regulated learning (SRL) and distributed practice, grounded in the spacing effect, forms the basis of the present study. SRL elements, which concern goal setting and strategy planning, are integrated into the system. The spaced practice method, similar to those used in widely recognized learning platforms like Duolingo and Anki flashcards, spreads out learning over multiple sessions. This study’s design features quizzes progressively increasing in difficulty. These quizzes are aimed at targeting both the Recognition-Recall and Comprehension-Use dimensions for a comprehensive acquisition of vocabulary. The mobile-based chatbot system is built using Golang, an open-source programming language developed by Google. It follows a structured flow that guides learners through a series of 4 quizzes in each week of teacher-led learning. The quizzes start with less cognitively demanding tasks, such as multiple-choice questions, before moving on to more complex exercises. The integration of SRL elements allows students to self-evaluate the difficulty level of vocabulary items, predict scores achieved, and choose appropriate strategy. This research is part one of a two-part project. The initial findings will determine the development of an upgraded chatbot system in part two, where adaptive features in response to the integration of SRL components will be introduced. The research objectives are to assess the effectiveness of the chatbot-assisted approach, based on the combination of spaced practice and SRL, in improving vocabulary acquisition and managing cognitive load, as well as to understand students' perceptions of this learning tool. The insights from this study will contribute to the growing body of research on mobile-assisted language learning and offer practical implications for integrating chatbot systems with spaced practice into educational settings to enhance vocabulary learning.Keywords: mobile learning, mobile-assisted language learning, MALL, chatbots, vocabulary learning, spaced practice, spacing effect, self-regulated learning, SRL, self-regulation, EFL, cognitive load
Procedia PDF Downloads 2210881 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 25710880 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry
Authors: Vivek Upadhayay, Siddharth Deshmukh
Abstract:
In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization
Procedia PDF Downloads 52610879 Enhancing Communicative Skills for Students in Automatics
Authors: Adrian Florin Busu
Abstract:
The communicative approach, or communicative language teaching, used for enhancing communicative skills in students in automatics is a modern teaching approach based on the concept of learning a language through having to communicate real meaning. In the communicative approach, real communication is both the objective of learning and the means through which it takes place. This approach was initiated during the 1970’s and quickly became prominent, as it proposed an alternative to the previous systems-oriented approaches. In other words, instead of focusing on the acquisition of grammar and vocabulary, the communicative approach aims at developing students’ competence to communicate in the target language with an enhanced focus on real-life situations. To put it in an nutshell, CLT considers using the language to be just as important as actually learning the language.Keywords: communication, approach, objective, learning
Procedia PDF Downloads 16110878 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 22610877 Multiple Etiologies and Incidences of Co-Infections in Childhood Diarrhea in a Hospital Based Screening Study in Odisha, India
Authors: Arpit K. Shrivastava, Nirmal K. Mohakud, Subrat Kumar, Priyadarshi S. Sahu
Abstract:
Acute diarrhea is one of the major causes of morbidity and mortality among children less than five years of age. Multiple etiologies have been implicated for infectious gastroenteritis causing acute diarrhea. In our study fecal samples (n=165) were collected from children (<5 years) presenting with symptoms of acute diarrhea. Samples were screened for viral, bacterial, and parasitic etiologies such as Rotavirus, Adenovirus, Diarrhoeagenic Escherichia coli (EPEC, EHEC, STEC, O157, O111), Shigella spp., Salmonella spp., Vibrio cholera, Cryptosporidium spp., and Giardia spp. The overall results from our study showed that 57% of children below 5 years of age with acute diarrhea were positive for at least one infectious etiology. Diarrhoeagenic Escherichia coli was detected to be the major etiological agent (29.09%) followed by Rotavirus (24.24%), Shigella (21.21%), Adenovirus (5.45%), Cryptosporidium (2.42%), and Giardia (0.60%). Among the different DEC strains, EPEC was detected significantly higher in <2 years children in comparison to >2 years age group (p =0.001). Concurrent infections with two or more pathogens were observed in 47 of 160 (28.48%) cases with a predominant incidence particularly in <2-year-old children (66.66%) compared to children of 2 to 5 years age group. Co-infection of Rotavirus with Shigella was the most frequent combination, which was detected in 17.94% cases, followed by Rotavirus with EPEC (15.38%) and Shigella with STEC (12.82%). Detection of multiple infectious etiologies and diagnosis of the right causative agent(s) can immensely help in better management of acute childhood diarrhea. In future more studies focusing on the detection of cases with concurrent infections must be carried out, as we believe that the etiological agents might be complementing each other’s strategies of pathogenesis resulting in severe diarrhea.Keywords: children, co-infection, infectious diarrhea, Odisha
Procedia PDF Downloads 33610876 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario
Authors: Sarita Agarwal, Deepika Delsa Dean
Abstract:
Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation
Procedia PDF Downloads 13110875 A Case Comparative Study of Infant Mortality Rate in North-West Nigeria
Authors: G. I. Onwuka, A. Danbaba, S. U. Gulumbe
Abstract:
This study investigated of Infant Mortality Rate as observed at a general hospital in Kaduna-South, Kaduna State, North West Nigeria. The causes of infant Mortality were examined. The data used for this analysis were collected at the statistics unit of the Hospital. The analysis was carried out on the data using Multiple Linear regression Technique and this showed that there is linear relationship between the dependent variable (death) and the independent variables (malaria, measles, anaemia, and coronary heart disease). The resultant model also revealed that a unit increment in each of these diseases would result to a unit increment in death recorded, 98.7% of the total variation in mortality is explained by the given model. The highest number of mortality was recorded in July, 2005 and the lowest mortality recorded in October, 2009.Recommendations were however made based on the results of the study.Keywords: infant mortality rate, multiple linear regression, diseases, serial correlation
Procedia PDF Downloads 33110874 The Effect of Six-Weeks of Elastic Exercises with Reactionary Ropes on Nerve Conduction Velocity and Balance in Females with Multiple Sclerosis
Authors: Mostafa Sarabzadeh, Masoumeh Helalizadeh, Seyyed Mahmoud Hejazi
Abstract:
Multiple Sclerosis is considered as diseases related to central nerve system, the chronic and progressive disease impress on sensory and motor function of people. Due to equilibrium problems in this patients that related to disorder of nerve conduction transmission from central nerve system to organs and the nature of elastic bands that can make changes in neuromuscular junctions and momentary actions, the aim of this research is evaluate elastic training effect by reactionary ropes on nerve conduction velocity (in lower and upper limb) and functional balance in female patients with Multiple Sclerosis. The study was a semi-experimental study that was performed based on pre and post-test method, The statistical community consisted of 16 women with MS in the age mean 25-40yrs, at low and intermediate levels of disease EDSS 1-4 (Expanded Disability Status Scale) that were divided randomly into elastic and control groups, so the training program of experimental group lasted six weeks, 3 sessions per week of elastic exercises with reactionary ropes. Electroneurography parameters (nerve conduction velocity- latency) of Upper and lower nerves (Median, Tibial, Sural, Peroneal) along with balance were investigated respectively by the Electroneurography system (ENG) and Timed up and go (TUG) functional test two times in before and after the training period. After that, To analyze the data were used of Dependent and Independent T-test (with sig level p<0.05). The results showed significant increase in nerve conduction velocity of Sural (p=0.001), Peroneal (p=0.01), Median (p=0.03) except Tibial and also development Latency Time of Tibial (p= 0), Peroneal (p=0), Median (p=0) except Sural. The TUG test showed significant decreases in execution time too (p=0.001). Generally, based on what the obtained data can indicate, modern training with elastic bands can contribute to enhanced nerve conduction velocity and balance in neurosis patients (MS) so lead to reduce problems, promotion of mobility and finally more life expectancy in these patients.Keywords: balance, elastic bands, multiple sclerosis, nerve conduction, velocity
Procedia PDF Downloads 21910873 Analyzing Business Model Choices and Sustainable Value Capturing: A Multiple Case Study of Sharing Economy Business Models
Authors: Minttu Laukkanen, Janne Huiskonen
Abstract:
This study investigates the sharing economy business models as examples of the sustainable business models. The aim is to contribute to the limited literature on sharing economy in connection with sustainable business models by explaining sharing economy business models value capturing. Specifically, this research answers the following question: How business model choices affect captured sustainable value? A multiple case study approach is applied in this study. Twenty different successful sharing economy business models focusing on consumer business and covering four main areas, accommodation, mobility, food, and consumer goods, are selected for analysis. The secondary data available on companies’ websites, previous research, reports, and other public documents are used. All twenty cases are analyzed through the sharing economy business model framework and sustainable value analysis framework using qualitative data analysis. This study represents general sharing economy business model value attributes and their specifications, i.e. sustainable value propositions for different stakeholders, and further explains the sustainability impacts of different sharing economy business models through captured and uncaptured value. In conclusion, this study represents how business model choices affect sustainable value capturing through eight business model attributes identified in this study. This paper contributes to the research on sustainable business models and sharing economy by examining how business model choices affect captured sustainable value. This study highlights the importance of careful business model and sustainability impacts analyses including the triple bottom line, multiple stakeholders and value captured and uncaptured perspectives as well as sustainability trade-offs. It is not self-evident that sharing economy business models advance sustainability, and business model choices does matter.Keywords: sharing economy, sustainable business model innovation, sustainable value, value capturing
Procedia PDF Downloads 17410872 Multithreading/Multiprocessing Simulation of The International Space Station Multibody System Using A Divide and Conquer Dynamics Formulation with Flexible Bodies
Authors: Luong A. Nguyen, Elihu Deneke, Thomas L. Harman
Abstract:
This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm is an extension of Featherstone’s divide and conquer approach to include the flexible-body dynamics formulation. The equations of motion, configured for the International Space Station (ISS) with its robotic manipulator arm as a system of articulated flexible bodies, are implemented in separate computer processors. The performance of this divide-and-conquer algorithm implementation in multiple processors is compared with an existing method implemented on a single processor.Keywords: multibody dynamics, multiple processors, multithreading, divide-and-conquer algorithm, computational efficiency, flexible body dynamics
Procedia PDF Downloads 33710871 Development of an Appropriate Method for the Determination of Multiple Mycotoxins in Pork Processing Products by UHPLC-TCFLD
Authors: Jason Gica, Yi-Hsieng Samuel Wu, Deng-Jye Yang, Yi-Chen Chen
Abstract:
Mycotoxins, harmful secondary metabolites produced by certain fungi species, pose significant risks to animals and humans worldwide. Their stable properties lead to contamination during grain harvesting, transportation, and storage, as well as in processed food products. The prevalence of mycotoxin contamination has attracted significant attention due to its adverse impact on food safety and global trade. The secondary contamination pathway from animal products has been identified as an important route of exposure, posing health risks for livestock and humans consuming contaminated products. Pork, one of the highly consumed meat products in Taiwan according to the National Food Consumption Database, plays a critical role in the nation's diet and economy. Given its substantial consumption, pork processing products are a significant component of the food supply chain and a potential source of mycotoxin contamination. This study is paramount for formulating effective regulations and strategies to mitigate mycotoxin-related risks in the food supply chain. By establishing a reliable analytical method, this research contributes to safeguarding public health and enhancing the quality of pork processing products. The findings will serve as valuable guidance for policymakers, food industries, and consumers to ensure a safer food supply chain in the face of emerging mycotoxin challenges. An innovative and efficient analytical approach is proposed using Ultra-High Performance Liquid Chromatography coupled with Temperature Control Fluorescence Detector Light (UHPLC-TCFLD) to determine multiple mycotoxins in pork meat samples due to its exceptional capacity to detect multiple mycotoxins at the lowest levels of concentration, making it highly sensitive and reliable for comprehensive mycotoxin analysis. Additionally, its ability to simultaneously detect multiple mycotoxins in a single run significantly reduces the time and resources required for analysis, making it a cost-effective solution for monitoring mycotoxin contamination in pork processing products. The research aims to optimize the efficient mycotoxin QuEChERs extraction method and rigorously validate its accuracy and precision. The results will provide crucial insights into mycotoxin levels in pork processing products.Keywords: multiple-mycotoxin analysis, pork processing products, QuEChERs, UHPLC-TCFLD, validation
Procedia PDF Downloads 7510870 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi
Authors: Ahmad Lutfi, Nikolas Dhega
Abstract:
The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.Keywords: molybdenite, Malala, porphyries, anomaly B
Procedia PDF Downloads 15310869 Clinical Nursing Experience in Managing a Uterine Cancer Patient with Psychogenic Shock During the Extracorporeal Membrane Oxygenation Weaning Process
Authors: Syue-Wen Lin
Abstract:
Objective: This article discusses the nursing experience of caring for a uterine cancer patient who experienced cardiogenic shock and was weaned off ECMO. The patient was placed on ECMO due to cardiogenic shock and initially struggled with anxiety caused by the physical discomfort from the disease and multiple medical devices, as well as the isolation in the ICU and restrictions on physical activity. Over time, the patient was able to wean off ECMO and perform daily activities and rehabilitation independently. Methods: The nursing period was from January 6 to January 9. Through observation, direct care, interviews, physical assessments, and case reviews, the intensive care team and bypass personnel conducted a comprehensive assessment using Gordon's 11 functional health patterns. The assessment identified three main nursing health problems: pain, anxiety, and decreased cardiac tissue perfusion. Results: The author consulted a psychologist to employ open communication techniques and empathetic care to build a trusting nurse-patient relationship. A patient-centered intensive cancer care plan was developed. Pain was assessed using a pain scale, and pain medications were adjusted in consultation with a pharmacist. Lavender essential oil therapy, light music, and pillows were used to distract and alleviate pain. The patient was encouraged to express feelings and family members were invited to increase visits and provide companionship to reduce the uncertainty caused by cancer and illness. Vital signs were closely monitored, and nursing interventions were provided to maintain adequate myocardial perfusion. Post-ECMO, the patient was encouraged to engage in rehabilitation and cardiopulmonary training. Conclusion: A key takeaway from the care process is the importance of observing not only the patient's vital signs but also their psychological state, especially when dealing with cancer patients on ECMO. The patient's greatest source of comfort was the presence of family, which helped alleviate anxiety. Healthcare providers play multiple critical roles as advocates, coordinators, educators, and counselors, listening to and accepting the patient’s emotional responses. The report aims to provide clinical cancer nurses with a reference to improve the quality of care and alleviate cancer-related discomfort.Keywords: ECMO, uterine cancer, palliative care, Gordon's 11 functional health patterns
Procedia PDF Downloads 3310868 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 36810867 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling
Procedia PDF Downloads 14910866 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 28210865 Subjective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images
Authors: Emhimed Saffor
Abstract:
In this paper, the problem of edge detection in digital images is considered. Three methods of edge detection based on mathematical morphology algorithm were applied on two sets (Brain and Chest) CT images. 3x3 filter for first method, 5x5 filter for second method and 7x7 filter for third method under MATLAB programming environment. The results of the above-mentioned methods are subjectively evaluated. The results show these methods are more efficient and satiable for medical images, and they can be used for different other applications.Keywords: CT images, Matlab, medical images, edge detection
Procedia PDF Downloads 33810864 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia
Authors: Habib Alshuwaikhat, Nahid Hossain
Abstract:
Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation
Procedia PDF Downloads 49610863 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability
Authors: Sherry Ann Ganase, Sandra Sookram
Abstract:
This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.Keywords: adaptation, Bequia, multiple linear regression, structural equation model
Procedia PDF Downloads 46410862 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters
Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn
Abstract:
The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm
Procedia PDF Downloads 11310861 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering
Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala
Abstract:
Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.Keywords: e-Tendering, e-Procurement, group decision making, tender evaluation, tender evaluation committee, UML, object-oriented methodologies, system development
Procedia PDF Downloads 26410860 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA
Authors: Mohammad Ali Farrokhpour
Abstract:
In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the modelKeywords: route planning, scooter sharing, public transportation, sharing system
Procedia PDF Downloads 8610859 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario
Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad
Abstract:
One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)
Procedia PDF Downloads 30310858 Magnitude of Infection and Associated factor in Open Tibial Fractures Treated Operatively at Addis Ababa Burn Emergency and Trauma Center April, 2023
Authors: Tuji Mohammed Sani
Abstract:
Back ground: An open tibial fracture is an injury where the fractured bone directly communicates with the outside environment. Due to the specific anatomical features of the tibia (limited soft tissue coverage), more than quarter of its fractures are classified as open, representing the most common open long-bone injuries. Open tibial fractures frequently cause significant bone comminution, periosteal stripping, soft tissue loss, contamination and are prone to bacterial entry with biofilm formation, which increases the risk of deep bone infection. Objective: The main objective of the study was to determine Prevalence of infection and its associated factors in surgically treated open tibial fracture in Addis Ababa Burn Emergency and Trauma (AaBET) center. Method: A facility based retrospective cross-sectional study was conducted among patient treated for open tibial fracture at AaBET center from September 2018 to September 2021. The data was collected from patient’s chart using structured data collection form, and Data was entered and analyzed using SPSS version 26. Bivariable and multiple binary logistic regression were fitted. Multicollinearity was checked among candidate variables using variance inflation factor and tolerance, which were less than 5 and greater than 0.2, respectively. Model adequacy were tested using Hosmer-Lemeshow goodness of fitness test (P=0.711). AOR at 95% CI was reported, and P-value < 0.05 was considered statistically significant. Result: This study found that 33.9% of the study participants had an infection. Initial IV antibiotic time (AOR=2.924, 95% CI:1.160- 7.370) and time of wound closure from injury (AOR=3.524, 95% CI: 1.798-6.908), injury to admission time (AOR=2.895, 95% CI: 1.402 – 5.977). and definitive fixation method (AOR=0.244, 95% CI: 0.113 – 0.4508) were the factors found to have a statistically significant association with the occurrence of infection. Conclusion: The rate of infection in open tibial fractures indicates that there is a need to improve the management of open tibial fracture treated at AaBET center. Time from injury to admission, time from injury to first debridement, wound closure time, and initial Intra Venous antibiotic time from the injury are an important factor that can be readily amended to improve the infection rate. Whether wound closed before seven days or not were more important factor associated with occurrences of infection.Keywords: infection, open tibia, fracture, magnitude
Procedia PDF Downloads 8410857 Achieving Competitive Advantage Through Internal Resources and Competences
Authors: Ibrahim Alkandi
Abstract:
This study aims at understanding how banks can utilize their resources and capabilities to achieve a competitive advantage. The resource-based approach has been applied to assess the resources and capabilities as well as how the management perceives them as sources of competitive advantages. A quantitative approach was implemented using cross-sectional data. The research population consisted of Top managers in financial companies in Saudi Arabia, and the sample comprised 79 managers. The resources were sub divided into tangible and intangible. Among the variables that will be assessed in the research include propriety rights, trademark which is the brand, communication as well as organizational culture. To achieve the objective of the research, Multivariate analysis through multiple regression was used. The research tool used is a questionnaire whose validity is also assessed. According to the results of the study, there is a significant relationship between bank’s performance and the strategic management of propriety rights, trademark, administrative and financial skills as well as bank culture. Therefore, the research assessed four aspects, among the variables in the model, in relation to the strategic performance of these banks. The aspects considered were trademark, communication, administrative and leadership style as well as the company’s culture. Hence, this paper contributes to the body of literature by providing empirical evidence of the resources influencing both banks’ market and economic performance.Keywords: competitive advantage, Saudi banks, strategic management, RBV
Procedia PDF Downloads 76