Search results for: data space connector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28049

Search results for: data space connector

26459 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters

Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu

Abstract:

Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.

Keywords: induction heating, LQR controller, skin depth, temperature field

Procedia PDF Downloads 46
26458 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.

Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure

Procedia PDF Downloads 426
26457 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 892
26456 Fold and Thrust Belts Seismic Imaging and Interpretation

Authors: Sunjay

Abstract:

Plate tectonics is of very great significance as it represents the spatial relationships of volcanic rock suites at plate margins, the distribution in space and time of the conditions of different metamorphic facies, the scheme of deformation in mountain belts, or orogens, and the association of different types of economic deposit. Orogenic belts are characterized by extensive thrust faulting, movements along large strike-slip fault zones, and extensional deformation that occur deep within continental interiors. Within oceanic areas there also are regions of crustal extension and accretion in the backarc basins that are located on the landward sides of many destructive plate margins.Collisional orogens develop where a continent or island arc collides with a continental margin as a result of subduction. collisional and noncollisional orogens can be explained by differences in the strength and rheology of the continental lithosphere and by processes that influence these properties during orogenesis.Seismic Imaging Difficulties-In triangle zones, several factors reduce the effectiveness of seismic methods. The topography in the central part of the triangle zone is usually rugged and is associated with near-surface velocity inversions which degrade the quality of the seismic image. These characteristics lead to low signal-to-noise ratio, inadequate penetration of energy through overburden, poor geophone coupling with the surface and wave scattering. Depth Seismic Imaging Techniques-Seismic processing relates to the process of altering the seismic data to suppress noise, enhancing the desired signal (higher signal-to-noise ratio) and migrating seismic events to their appropriate location in space and depth. Processing steps generally include analysis of velocities, static corrections, moveout corrections, stacking and migration. Exploration seismology Bow-tie effect -Shadow Zones-areas with no reflections (dead areas). These are called shadow zones and are common in the vicinity of faults and other discontinuous areas in the subsurface. Shadow zones result when energy from a reflector is focused on receivers that produce other traces. As a result, reflectors are not shown in their true positions. Subsurface Discontinuities-Diffractions occur at discontinuities in the subsurface such as faults and velocity discontinuities (as at “bright spot” terminations). Bow-tie effect caused by the two deep-seated synclines. Seismic imaging of thrust faults and structural damage-deepwater thrust belts, Imaging deformation in submarine thrust belts using seismic attributes,Imaging thrust and fault zones using 3D seismic image processing techniques, Balanced structural cross sections seismic interpretation pitfalls checking, The seismic pitfalls can originate due to any or all of the limitations of data acquisition, processing, interpretation of the subsurface geology,Pitfalls and limitations in seismic attribute interpretation of tectonic features, Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Carbon capture and geological storage leakage surveillance because fault behave as a seal or a conduit for hydrocarbon transportation to a trap,etc.

Keywords: tectonics, seismic imaging, fold and thrust belts, seismic interpretation

Procedia PDF Downloads 73
26455 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters

Authors: Tridipa Biswas, Kamal Pandey

Abstract:

A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.

Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters

Procedia PDF Downloads 313
26454 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study

Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.

Abstract:

Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG

Keywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation

Procedia PDF Downloads 152
26453 Gender: Schooling and Social Condition’s Women in Brazil

Authors: Simone Tamires Vieira

Abstract:

This paper aims to investigate the history of women's schooling in Brazil and to reflect on the condition and social space of women today. Therefore, the following question arises as a research problem: how does the history of the school in/exclusion of women in Brazil relate to the occupations occupied today? As for the objectives, we seek to collect data on the education of women and girls in Brazil, analyze some institutionalized educational legislation and policies, reflect on issues of opportunity and deprivation in order to problematize the female condition through the review of qualitative literature. The results showed that gender and symbolic violence are powerful categories to analyze this theme since the trajectories, choices, and opportunities given to women are permeated by veiled mechanisms perpetuated by a structurally patriarchal society, focused on the interests of the elite, which denies diversity to maintain its status. The aim of this research is to contribute to reflections on the potential of dialogical action, as it highlights the forces that act and permeate the trajectories of women to empower current and future generations.

Keywords: gender, school in/exclusion symbolic violence, women, symbolic violence, women

Procedia PDF Downloads 159
26452 End to End Monitoring in Oracle Fusion Middleware for Data Verification

Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan

Abstract:

In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.

Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring

Procedia PDF Downloads 486
26451 Portrayal of Foreign Culture in Pakistani Newspapers

Authors: Ghulam Shabir, Masood Nadeem

Abstract:

The research work has been done on the Portrayal of Foreign Culture including Film, Art, and Drama in Pakistani English newspapers (Dawn and The News). For this purpose the weekly newspapers of three months (January to March) of the years 1990, 1995, 2000, 2005, and 2010 were analyzed. Content Analysis was employed for data interpretation and to draw the inferences. It was explored that to what extent the Foreign Culture has been depicted in our print media in the form of Film, Art, and Drama in comparison to Pakistani cultural context. The qualitative analysis revealed that Pakistani English newspapers gave more coverage to Foreign Culture. Pakistani film, art, and drama related issues have been less portrayed in the form of stories, columns, pictures, and news about music, fashion, ceremonies, programs, and shows. However, most of the space has been occupied by Western and Indian pictures, and news about music, fashion, ceremonies, programs and shows on the Cultural Page of these English newspapers.

Keywords: newspapers, portrayal of foreign culture, qualitative analysis, Pakistani English newspapers

Procedia PDF Downloads 519
26450 Cable Transport for a Smart City: Between Challenges and Opportunities, Case of the City of Algiers, Algeria

Authors: Ihaddadene Thanina, Haraoubia Imane, Baouni Tahar

Abstract:

Urban mobility is one of the first challenges of cities; it is becoming more and more problematic because it is perceived as the cause of many dysfunctions; it is not only to facilitate accessibility but also to ensure vast benefits. For this reason, several cities in the world have thought about alternatives to smart mobility and sustainable transport. Today, the sustainable city has many cards at its disposal, and a new mode is entering the urban scene: aerial cable transport; it has imposed itself as an effective mode of public transport and a real solution for the future. This electric mobility brings a new dimension, not only to collective daily travel but also to the urban space. It has an excellent capacity to redevelop the public space; it is a catalyst that allows one to appreciate the view from the sky and to discover different large-scale projects that bring an important attractiveness to the city. With regard to the cities in the world which use these systems of transport: Algeria does not escape this reality; it is the country which has the greatest number of devices of urban transport by cable in the world, with installations in many cities such as Tlemcen, Constantine, Blida, Oran, Tizi-Ouzou, Annaba, Skikda. The following study explores the role of cable transport in the transformation of the city of Algiers into a smart city. The methodology used in this work is based on the development of a set of indicators using a questionnaire survey. The main objective of this work is to shed light on cable transport as a key issue in designing the sustainable city of tomorrow, to evaluate its role in the city of Algiers, and its ability to integrate into the urban transport network.

Keywords: Algiers, cable transport, indicators, smart city

Procedia PDF Downloads 118
26449 Mapping Contested Sites - Permanence Of The Temporary Mouttalos Case Study

Authors: M. Hadjisoteriou, A. Kyriacou Petrou

Abstract:

This paper will discuss ideas of social sustainability in urban design and human behavior in multicultural contested sites. It will focus on the potential of the re-reading of the “site” through mapping that acts as a research methodology and will discuss the chosen site of Mouttalos, Cyprus as a place of multiple identities. Through a methodology of mapping using a bottom up approach, a process of disassembling derives that acts as a mechanism to re-examine space and place by searching for the invisible and the non-measurable, understanding the site through its detailed inhabitation patterns. The significance of this study lies in the use of mapping as an active form of thinking rather than a passive process of representation that allows for a new site to be discovered, giving multiple opportunities for adaptive urban strategies and socially engaged design approaches. We will discuss the above thematic based on the chosen contested site of Mouttalos, a small Turkish Cypriot neighbourhood, in the old centre of Paphos (Ktima), SW of Cyprus. During the political unrest, between Greek and Turkish Cypriot communities, in 1963, the area became an enclave to the Turkish Cypriots, excluding any contact with the rest of the area. Following the Turkish invasion of 1974, the residents left their homes, plots and workplaces, resettling in the North of Cyprus. Greek Cypriot refugees moved into the area. The presence of the Greek Cypriot refugees is still considered to be a temporary resettlement. The buildings and the residents themselves exist in a state of uncertainty. The site is documented through a series of parallel investigations into the physical conditions and history of the site. Research methodologies use the process of mapping to expose the complex and often invisible layers of information that coexist. By registering the site through the subjective experiences, and everyday stories of inhabitants, a series of cartographic recordings reveals the space between: happening and narrative and especially space between different cultures and religions. Research put specific emphasis on engaging the public, promoting social interaction, identifying spatial patterns of occupation by previous inhabitants through social media. Findings exposed three main areas of interest. Firstly we identified inter-dependent relationships between permanence and temporality, characterised by elements such us, signage through layers of time, past events and periodical street festivals, unfolding memory and belonging. Secondly issues of co-ownership and occupation, found through particular narratives of exchange between the two communities and through appropriation of space. Finally formal and informal inhabitation of space, revealed through the presence of informal shared back yards, alternative paths, porous street edges and formal and informal landmarks. The importance of the above findings, was achieving a shift of focus from the built infrastructure to the soft network of multiple and complex relations of dependence and autonomy. Proposed interventions for this contested site were informed and led by a new multicultural identity where invisible qualities were revealed though the process of mapping, taking on issues of layers of time, formal and informal inhabitation and the “permanence of the temporary”.

Keywords: contested sites, mapping, social sustainability, temporary urban strategies

Procedia PDF Downloads 424
26448 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 169
26447 Key Aroma Compounds as Predictors of Pineapple Sensory Quality

Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth

Abstract:

Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.

Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).

Procedia PDF Downloads 61
26446 WiFi Data Offloading: Bundling Method in a Canvas Business Model

Authors: Majid Mokhtarnia, Alireza Amini

Abstract:

Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.

Keywords: bundling, canvas business model, telecommunication, WiFi data offloading

Procedia PDF Downloads 203
26445 Evaluation of Planned and Organically Transformed Public Spaces in Urban Indian Market Places: A Case of Bhopal City, India

Authors: Piyush Hajela

Abstract:

Public spaces within Indian markets are vibrant, colorful and contain dimensions that make them attractive and therefore act as popular gathering spaces. Most of these public spaces emerge as squares, plazas of varied shapes and sizes spread at different locations within the market. These public spaces grow organically and are discovered by the people themselves as they respond positively to the collective human senses. On the other hand, there are the planned and designed public spaces as well that are less active. This research evaluates both the planned and the organically transformed public spaces in Indian markets from an Urban Design point of view. The purpose of such research is to provide a basis for design solutions to ensure the success of designed public spaces. The evaluation is done for identified Attributes, namely Comfort, Protection, Familiarity, Activities, Form, Legibility, Engagement, Safety, Accessibility, Environment and Transformations by which a Public Space attains its recognition. The evaluation is based on a rating done for forty-four parameters falling under eleven attributes of public space. An opinion survey of professionals is conducted for their priorities of attributes while designing Public spaces. A comparison is made to rank these attributes between Planned and Organically transformed Public spaces and, opinion of the professionals. After dues analysis, the research suggests the learning from the organically transformed Public spaces for ensuring the success of designed public spaces. The suggestions may be in the form of Design decisions or administrative regulations, or both for achieving the desirables.

Keywords: assessment, attributes, engagement, interaction

Procedia PDF Downloads 215
26444 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 438
26443 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels

Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano

Abstract:

It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.

Keywords: dust detection, photovoltaic, artificial vision, soiling

Procedia PDF Downloads 54
26442 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry

Authors: Sepinoud Hamedi

Abstract:

Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.

Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental

Procedia PDF Downloads 78
26441 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth

Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson

Abstract:

Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.

Keywords: dynamic accessibility, hot spot, transport research, TomTom® API

Procedia PDF Downloads 395
26440 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 128
26439 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 165
26438 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 357
26437 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 116
26436 Hydro-Meteorological Vulnerability and Planning in Urban Area: The Case of Yaoundé City in Cameroon

Authors: Ouabo Emmanuel Romaric, Amougou Armathe

Abstract:

Background and aim: The study of impacts of floods and landslides at a small scale, specifically in the urban areas of developing countries is done to provide tools and actors for a better management of risks in such areas, which are now being affected by climate change. The main objective of this study is to assess the hydrometeorological vulnerabilities associated with flooding and urban landslides to propose adaptation measures. Methods: Climatic data analyses were done by calculation of indices of climate change within 50 years (1960-2012). Analyses of field data to determine causes, the level of risk and its consequences on the area of study was carried out using SPSS 18 software. The cartographic analysis and GIS were used to refine the work in space. Then, spatial and terrain analyses were carried out to determine the morphology of field in relation with floods and landslide, and the diffusion on the field. Results: The interannual changes in precipitation has highlighted the surplus years (21), the deficit years (24) and normal years (7). Barakat method bring out evolution of precipitation by jerks and jumps. Floods and landslides are correlated to high precipitation during surplus and normal years. Data field analyses show that populations are conscious (78%) of the risks with 74% of them exposed, but their capacities of adaptation is very low (51%). Floods are the main risk. The soils are classed as feralitic (80%), hydromorphic (15%) and raw mineral (5%). Slope variation (5% to 15%) of small hills and deep valley with anarchic construction favor flood and landslide during heavy precipitation. Mismanagement of waste produce blocks free circulation of river and accentuate floods. Conclusion: Vulnerability of population to hydrometeorological risks in Yaoundé VI is the combination of variation of parameters like precipitation, temperature due to climate change, and the bad planning of construction in urban areas. Because of lack of channels for water to circulate due to saturation of soils, the increase of heavy precipitation and mismanagement of waste, the result are floods and landslides which causes many damages on goods and people.

Keywords: climate change, floods, hydrometeorological, vulnerability

Procedia PDF Downloads 470
26435 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 531
26434 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 563
26433 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 70
26432 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃

Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev

Abstract:

Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.

Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction

Procedia PDF Downloads 269
26431 Preparation of New Organoclays and Applications for Adsorption of Telon Dyes in Aqueous Solutions

Authors: Benamar Makhoukhi

Abstract:

Clay ion-exchange using bismidazolium salts (MBIM) could provide organophilic clays materials that allow effective retention of polluting dyes. The present investigations deal with bentonite (Bt) modification using (ortho, meta and para) bisimidazolium cations and attempts to remove a synthetic textile dyes, such as (Telon-Orange, Telon-Red and Telon-Blue) by adsorption, from aqueous solutions. The surface modification of MBIM–Bt was examined using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption tests applied to Telon dyes revealed a significant increase of the maximum adsorption capacity from ca. 21-28 to 88-108 mg.g-1 after intercalation. The highest adsorption level was noticed for Telon-Orange dye on the p-MBIM–Bt, presumably due higher interlayer space and better diffusion. The pseudo-first order rate equation was able to provide the best description of adsorption kinetics data for all three dyestuffs. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The results show that MBIM–Bt could be employed as low-cost material for the removal of Telon dyes from effluents.

Keywords: Bentonite, Organoclay, Bisimidazolium, Dyes, Isotherms, Adsorption

Procedia PDF Downloads 447
26430 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 81