Search results for: Kernel Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18727

Search results for: Kernel Method

17137 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 568
17136 Development of Bicomponent Fibre to Combat Insects

Authors: M. Bischoff, F. Schmidt, J. Herrmann, J. Mattheß, G. Seide, T. Gries

Abstract:

Crop yields have not increased as dramatically as the demand for food. One method to counteract this is to use pesticides to keep away predators, e.g. several forms of insecticide are available to fight insects. These insecticides and pesticides are both controversial as their application and their residue in the food product can also harm humans. In this study an alternative method to combat insects is studied. A physical insect-killing effect of SiO2 particles is used. The particles are applied on fibres to avoid erosion in the fields, which would occur when applied separately. The development of such SiO2 functionalized PP fibres is shown.

Keywords: agriculture, environment, insects, protection, silica, textile

Procedia PDF Downloads 281
17135 Sparsity Order Selection and Denoising in Compressed Sensing Framework

Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar

Abstract:

Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.

Keywords: compressed sensing, data denoising, model order selection, sparse representation

Procedia PDF Downloads 462
17134 Long-Persistent Luminescent MAl2O4:Eu;Dy Phoshors Synthesized by Combustion

Authors: Yusuf Ziya Halefoğlu

Abstract:

Phosphorescence, classically, excitation effects (radiation, electron beam, electric field, temperature, etc.) is the name given after the elimination of materials that glow in the visible region. This event continues to glow after the elimination of the effect of excitation is called phosphorescence. In this study were synthesized by the method of the combustion lanthanide doped alkaline earth aluminates. High temperature and long reaction time required and the sol-gel method of combustion according to the methods of solid state synthesis temperature lower than the short reaction time, a small particle size, convenience, and is superior in terms of being secured. Their microstructures and its effect on the photoluminescence properties were studied. Phosphorescence is derived in the dark when produced materials are held in sunlight or under ultraviolet light typically at 365-520 nm wavelength range. In this study, the optimal ratio of rare earth elements, in terms of brightness and glow duration was examined by SEM, XRD and photoluminescence analysis.

Keywords: persistence luminescence, phosphorescence, trap depth, combustion method

Procedia PDF Downloads 221
17133 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 493
17132 Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method

Authors: Hamidreza Mansouri

Abstract:

In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant.

Keywords: GTAW welding, stress corrosion cracking(SCC), thermal method, ultrasonic peening.

Procedia PDF Downloads 27
17131 First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles

Authors: Kolja Them, Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis.

Keywords: noninvasive imaging, tumor antigens, antibody conjugated iron oxide nanoparticles, multicolor magnetic particle imaging, cancer diagnosis

Procedia PDF Downloads 282
17130 A Fast Convergence Subband BSS Structure

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin

Abstract:

A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 532
17129 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties

Procedia PDF Downloads 363
17128 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 182
17127 Simple Modified Method for DNA Isolation from Lyophilised Cassava Storage Roots (Manihot esculenta Crantz.)

Authors: P. K. Telengech, K. Monjero, J. Maling’a, A. Nyende, S. Gichuki

Abstract:

There is need to identify an efficient protocol for use in extraction of high quality DNA for purposes of molecular work. Cassava roots are known for their high starch content, polyphenols and other secondary metabolites which interfere with the quality of the DNA. These factors have negative interference on the various methodologies for DNA extraction. There is need to develop a simple, fast and inexpensive protocol that yields high quality DNA. In this improved Dellaporta method, the storage roots are lyophilized to reduce the water content; the extraction buffer is modified to eliminate the high polyphenols, starch and wax. This simple protocol was compared to other protocols intended for plants with similar secondary metabolites. The method gave high yield (300-950ng) and pure DNA for use in PCR analysis. This improved Dellaporta protocol allows isolation of pure DNA from starchy cassava storage roots.

Keywords: cassava storage roots, dellaporta, DNA extraction, lyophilisation, polyphenols secondary metabolites

Procedia PDF Downloads 334
17126 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence

Authors: Abdullah Bajelan, Adel Akbarimajd

Abstract:

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.

Keywords: mechanical intelligence, object manipulation, passive mechanism, passive non-prehensile manipulation

Procedia PDF Downloads 466
17125 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 296
17124 Static Properties of Ge and Sr Isotopes in the Cluster Model

Authors: Mohammad Reza Shojaei, Mahdeih Mirzaeinia

Abstract:

We have studied the cluster structure of even-even stable isotopes of Ge and Sr. The Schrodinger equation has been solved using the generalized parametric Nikiforov-Uvarov method with a phenomenological potential. This potential is the sum of the attractive Yukawa-like potential, a Manning-Rosen-type potential, and the repulsive Yukawa potential for interaction between the cluster and the core. We have shown that the available experimental data of the first rotational band energies can be well described by assuming a binary system of the α cluster and the core and using an analytical solution. Our results were consistent with experimental values. Hence, this model can be applied to study the other even-even isotopes

Keywords: cluser model, NU method, ge and Sr, potential central

Procedia PDF Downloads 52
17123 Isolated Microspore Culture in Durum Wheat

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: Durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 326
17122 Comparative Study to Evaluate Chronological Age and Dental Age in North Indian Population Using Cameriere Method

Authors: Ranjitkumar Patil

Abstract:

Age estimation has its importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seems to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’smethodand to compare the chronological age and dental age for validation of the Cameriere’smethod in the north Indian population. A comparative study of 02 year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with age ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from the institutional ethical committee. The data was obtained based on inclusion and exclusion criteria was analyzed by a software for dental age estimation. Statistical analysis: Student’s t test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. Regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between male and female, with their dental age assessed by using Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that cameriere’s method can be effectively applied in north Indianpopulation.

Keywords: Forensic, Chronological Age, Dental Age, Skeletal Age

Procedia PDF Downloads 73
17121 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics

Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov

Abstract:

The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.

Keywords: cure point, initial permeability, integral defects level, homogeneity

Procedia PDF Downloads 123
17120 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images

Authors: Ki Moo Lim, Iman R. Tayibnapis

Abstract:

According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.

Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis

Procedia PDF Downloads 316
17119 Effectiveness of Centromedullary Fixation by Metaizeau Technique in Challenging Pediatric Fractures

Authors: Mohammad Arshad Ikram

Abstract:

We report three cases of challenging fractures in children treated by intramedullary fixation using the Metaizeau method and achieved anatomical reduction with excellent clinical results. Jean-Paul Metaizeau described the centromedullary fixation for the radial neck in 1980 using K-wires Radial neck fractures are uncommon in children. Treatment of severely displaced fractures is always challenging. Closed reduction techniques are more popular as compared to open reduction due to the low risk of complications. Metaizeau technique of closed reduction with centromedullary pinning is a commonly preferred method of treatment. We present two cases with a severely displaced radial neck fracture, treated by this method and achieved sound union; anatomical position of the radial head and full function were observed two months after surgery. Proximal humerus fractures are another uncommon injury in children accounting for less than 5% of all pediatric fractures. Most of these injuries occur through the growth plate because of its relative weakness. Salter-Harris type I is commonly seen in the younger age group, whereas type II & III occurs in older children and adolescents. In contrast to adults, traumatic glenohumeral dislocation is an infrequently observed condition among children. A combination of proximal humerus fracture and glenohumeral dislocation is extremely rare and occurs in less than 2% of the pediatric population. The management of this injury is always challenging. Treatment ranged from closed reduction with and without internal fixation and open reduction with internal fixation. The children who had closed reduction with centromedullary fixation by the Metaizeau method showed excellent results with the return of full movements at the shoulder in a short time without any complication. We present the case of a child with anterior dislocation of the shoulder associated with a complete displaced proximal humerus metaphyseal fracture. The fracture was managed by closed reduction and then fixation by two centromedullary K-wires using the Metaizeau method, achieving the anatomical reduction of the fracture and dislocation. This method of treatment enables us to achieve excellent radiological and clinical results in a short time.

Keywords: glenohumeral, Metaizeau method, pediatric fractures, radial neck

Procedia PDF Downloads 86
17118 Numerical Evolution Methods of Rational Form for Diffusion Equations

Authors: Said Algarni

Abstract:

The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.

Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs

Procedia PDF Downloads 281
17117 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 421
17116 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method

Procedia PDF Downloads 297
17115 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 221
17114 An Improved Mesh Deformation Method Based on Radial Basis Function

Authors: Xuan Zhou, Litian Zhang, Shuixiang Li

Abstract:

Mesh deformation using radial basis function interpolation method has been demonstrated to produce quality meshes with relatively little computational cost using a concise algorithm. However, it still suffers from the limited deformation ability, especially in large deformation. In this paper, a pre-displacement improvement is proposed to improve the problem that illegal meshes always appear near the moving inner boundaries owing to the large relative displacement of the nodes near inner boundaries. In this improvement, nodes near the inner boundaries are first associated to the near boundary nodes, and a pre-displacement based on the displacements of associated boundary nodes is added to the nodes near boundaries in order to make the displacement closer to the boundary deformation and improve the deformation capability. Several 2D and 3D numerical simulation cases have shown that the pre-displacement improvement for radial basis function (RBF) method significantly improves the mesh quality near inner boundaries and deformation capability, with little computational burden increasement.

Keywords: mesh deformation, mesh quality, background mesh, radial basis function

Procedia PDF Downloads 347
17113 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 326
17112 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 92
17111 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School

Authors: Diriba Gemechu, Lamessa Abebe

Abstract:

The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.

Keywords: academic achievement, comparison group, cooperative learning, experimental group

Procedia PDF Downloads 232
17110 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: clustering, force-directed, graph drawing, stock investment analysis

Procedia PDF Downloads 287
17109 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method

Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli

Abstract:

Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.

Keywords: children with disability, learning abilities, inclusion, neuromotor development

Procedia PDF Downloads 131
17108 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 26