Search results for: tracking systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10013

Search results for: tracking systems

8453 Radar Fault Diagnosis Strategy Based on Deep Learning

Authors: Bin Feng, Zhulin Zong

Abstract:

Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.

Keywords: radar system, fault diagnosis, deep learning, radar fault

Procedia PDF Downloads 90
8452 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee

Authors: Shohreh Moshiri, Hossein Alimohammadi

Abstract:

Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.

Keywords: adaptive architecture, building technology, case study, smart material systems

Procedia PDF Downloads 72
8451 Vibration Absorption Strategy for Multi-Frequency Excitation

Authors: Der Chyan Lin

Abstract:

Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.

Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber

Procedia PDF Downloads 157
8450 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)

Authors: Wafa' Slaibi Alsharafat

Abstract:

Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.

Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection

Procedia PDF Downloads 474
8449 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review

Authors: M. Cortés, E. Vera, M. Avella

Abstract:

Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.

Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites

Procedia PDF Downloads 444
8448 Intelligent Platform for Photovoltaic Park Operation and Maintenance

Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou

Abstract:

A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.

Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance

Procedia PDF Downloads 49
8447 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures

Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski

Abstract:

Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems

Procedia PDF Downloads 348
8446 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 190
8445 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 445
8444 Identification of Cocoa-Based Agroforestry Systems in Northern Madagascar: Pillar of Sustainable Management

Authors: Marizia Roberta Rasoanandrasana, Hery Lisy Tiana. Ranarijaona, Herintsitohaina Razakamanarivo, Eric Delaitre, Nandrianina Ramifehiarivo

Abstract:

Madagascar is one of the producer’s countries of world's fine cocoa. Cocoa-based agroforestry systems (CBAS) plays a very important economic role for over 75% of the population in the north of Madagascar, the island's main cocoa-producing area. It is also viewed as a key factor in the deforestation of local protected areas. It is therefore urgent to establish a compromise between cocoa production and forest conservation in this region which is difficult due to a lack of accurate cocoa agro-systems data. In order to fill these gaps and to response to these socio-economic and environmental concerns, this study aims to describe CBAS by providing precise data on their characteristics and to establish a typology. To achieve this, 150 farms were surveyed and observed to characterize CBAS based on 11 agronomic and 6 socio-economic data. Also, 30 representative plots of CBAS among the 150 farms were inventoried for providing accurate ecological data (6 variables) as an additional data for the typology determination. The results showed that Madagascar’s CBAS systems are generally extensive and practiced by smallholders. Four types of cocoa-based agroforestry system were identified, with significant differences between the following variables: yield, planting age, cocoa density, density of associated trees, preceding crop, associated crops, Shannon-Wiener indices and species richness in the upper stratum. Type 1 is characterized by old systems (>45 years) with low crop density (425 cocoa trees/ha), installed after conversion of crops other than coffee (> 50%) and giving low yields (427 kg/ha/year). Type 2 consists of simple agroforestry systems (no associated crop 0%), fairly young (20 years) with low density of associated trees (77 trees/ha) and low species diversity (H'=1.17). Type 3 is characterized by high crop density (778 trees/ha and 175 trees/ha for cocoa and associated trees respectively) and a medium level of species diversity (H'=1.74, 8 species). Type 4 is particularly characterized by orchard regeneration method involving replanting and tree lopping (100%). Analysis of the potential of these four types has identified Type 4 as a promising practice for sustainable agriculture.

Keywords: conservation, practices, productivity, protect areas, smallholder, trade-off, typology

Procedia PDF Downloads 114
8443 A Comprehensive Review of Electronic Health Records Implementation in Healthcare

Authors: Lateefat Amao, Misagh Faezipour

Abstract:

Implementing electronic health records (EHR) in healthcare is a pivotal transition aimed at digitizing and optimizing patient health information management. The expectations associated with this transition are high, even towards other health information systems (HIS) and health technology. This multifaceted process involves careful planning and execution to improve the quality and efficiency of patient care, especially as healthcare technology is a sensitive niche. Key considerations include a thorough needs assessment, judicious vendor selection, robust infrastructure development, and training and adaptation of healthcare professionals. Comprehensive training programs, data migration from legacy systems and models, interoperability, as well as security and regulatory compliance are imperative for healthcare staff to navigate EHR systems adeptly. The purpose of this work is to offer a comprehensive review of the literature on EHR implementation. It explores the impact of this health technology on health practices, highlights challenges and barriers to its successful utility, and offers practical strategies that can impact its success in healthcare. This paper provides a thorough review of studies on the adoption of EHRs, emphasizing the wide range of experiences and results connected to EHR use in the medical field, especially across different types of healthcare organizations.

Keywords: healthcare, electronic health records, EHR implementation, patient care, interoperability

Procedia PDF Downloads 81
8442 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 150
8441 A System Dynamics Approach to Exploring Personality Traits in Young Children

Authors: Misagh Faezipour

Abstract:

System dynamics is a systems engineering approach that can help address the complex challenges in different systems. Little is known about how the brain represents people to predict behavior. This work is based on how the brain simulates different personal behavior and responds to them in the case of young children ages one to five. As we know, children’s minds/brains are just as clean as a crystal, and throughout time, in their surroundings, families, and education center, they grow to develop and have different kinds of behavior towards the world and the society they live in. Hence, this work aims to identify how young children respond to various personality behavior and observes their reactions towards them from a system dynamics perspective. We will be exploring the Big Five personality traits in young children. A causal model is developed in support of the system dynamics approach. These models graphically present the factors and factor relationships that contribute to the big five personality traits and provide a better understanding of the entire behavior model. A simulator will be developed that includes a set of causal model factors and factor relationships. The simulator models the behavior of different factors related to personality traits and their impacts and can help make more informed decisions in a risk-free environment.

Keywords: personality traits, systems engineering, system dynamics, causal model, behavior model

Procedia PDF Downloads 96
8440 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
8439 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller

Procedia PDF Downloads 416
8438 Realization of a (GIS) for Drilling (DWS) through the Adrar Region

Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz

Abstract:

Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.

Keywords: GIS, DWS, drilling, Adrar

Procedia PDF Downloads 309
8437 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation

Procedia PDF Downloads 325
8436 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 112
8435 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring

Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh

Abstract:

As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.

Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention

Procedia PDF Downloads 57
8434 Hawking Radiation of Grumiller Black

Authors: Sherwan Kher Alden Yakub Alsofy

Abstract:

In this paper, we consider the relativistic Hamilton-Jacobi (HJ) equation and study the Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. GBH is also known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter A on the Hawking temperature (TH ), but to examine whether there is any discrepancy between the computed horizon temperature and the standard TH as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems which are Painlev´-Gullstrand (PG), ingoing Eddington- Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. In all coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional TH in all these coordinate systems without giving rise to the famous factor- 2 problem. Furthermore, in the PG coordinates Parikh-Wilczek’s tunneling (PWT) method is employed in order to show how one can integrate the quantum gravity (QG) corrections to the semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then show how these corrections yield a modification in the TH.

Keywords: ingoing Eddington, Finkelstein, coordinates Parikh-Wilczek’s, Hamilton-Jacobi equation

Procedia PDF Downloads 615
8433 A Script for Presentation to the Management of a Teaching Hospital on DXplain Clinical Decision Support System

Authors: Jacob Nortey

Abstract:

Introduction: In recent years, there has been an enormous success in discoveries of scientific knowledge in medicine coupled with the advancement of technology. Despite all these successes, diagnoses and treatment of diseases have become complex. According to the Ibero – American Study of Adverse Effects (IBEAS), about 10% of hospital patients suffer from secondary damage during the care process, and approximately 2% die from this process. Many clinical decision support systems have been developed to help mitigate some healthcare medical errors. Method: Relevant databases were searched, including ones that were peculiar to the clinical decision support system (that is, using google scholar, Pub Med and general google searches). The articles were then screened for a comprehensive overview of the functionality, consultative style and statistical usage of Dxplain Clinical decision support systems. Results: Inferences drawn from the articles showed high usage of Dxplain clinical decision support system for problem-based learning among students in developed countries as against little or no usage among students in Low – and Middle – income Countries. The results also indicated high usage among general practitioners. Conclusion: Despite the challenges Dxplain presents, the benefits of its usage to clinicians and students are enormous.

Keywords: dxplain, clinical decision support sytem, diagnosis, support systems

Procedia PDF Downloads 79
8432 A Graph Library Development Based on the Service-‎Oriented Architecture: Used for Representation of the ‎Biological ‎Systems in the Computer Algorithms

Authors: Mehrshad Khosraviani, Sepehr Najjarpour

Abstract:

Considering the usage of graph-based approaches in systems and synthetic biology, and the various types of ‎the graphs employed by them, a comprehensive graph library based ‎on the three-tier architecture (3TA) was previously introduced for full representation of the biological systems. Although proposing a 3TA-based graph library, three following reasons motivated us to redesign the graph ‎library based on the service-oriented architecture (SOA): (1) Maintaining the accuracy of the data related to an input graph (including its edges, its ‎vertices, its topology, etc.) without involving the end user:‎ Since, in the case of using 3TA, the library files are available to the end users, they may ‎be utilized incorrectly, and consequently, the invalid graph data will be provided to the ‎computer algorithms. However, considering the usage of the SOA, the operation of the ‎graph registration is specified as a service by encapsulation of the library files. In other words, overall control operations needed for registration of the valid data will be the ‎responsibility of the services. (2) Partitioning of the library product into some different parts: Considering 3TA, a whole library product was provided in general. While here, the product ‎can be divided into smaller ones, such as an AND/OR graph drawing service, and each ‎one can be provided individually. As a result, the end user will be able to select any ‎parts of the library product, instead of all features, to add it to a project. (3) Reduction of the complexities: While using 3TA, several other libraries must be needed to add for connecting to the ‎database, responsibility of the provision of the needed library resources in the SOA-‎based graph library is entrusted with the services by themselves. Therefore, the end user ‎who wants to use the graph library is not involved with its complexity. In the end, in order to ‎make ‎the library easier to control in the system, and to restrict the end user from accessing the files, ‎it was preferred to use the service-oriented ‎architecture ‎‎(SOA) over the three-tier architecture (3TA) and to redevelop the previously proposed graph library based on it‎.

Keywords: Bio-Design Automation, Biological System, Graph Library, Service-Oriented Architecture, Systems and Synthetic Biology

Procedia PDF Downloads 311
8431 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral

Abstract:

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation

Procedia PDF Downloads 349
8430 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters

Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki

Abstract:

In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.

Keywords: crisis management, disaster mitigation, messing, MGRS, military grid reference system, satellite communication system

Procedia PDF Downloads 236
8429 Automated Human Balance Assessment Using Contactless Sensors

Authors: Justin Tang

Abstract:

Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.

Keywords: automated, concussion detection, contactless sensors, microsoft kinect

Procedia PDF Downloads 317
8428 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) array-powered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: energy, inverter, losses, photovoltaic

Procedia PDF Downloads 640
8427 An Investigation of Quality Practices in Libyan Industrial Companies

Authors: Mostafa A. Shokshok, Omran Ali Abu Krais

Abstract:

This paper describes the collection and analysis of data obtained from face-to-face interviews conducted in selected Libyan industrial companies. The objectives of the interviews are to enhance understanding, and generate explanations of current issues in culture and quality management systems in Libyan companies. The method used in analyzing the questions, as well as the main finding of each question are explained. The interviews probed areas identify national and organizational culture, quality management systems, current methods, effects, barriers and other factors affecting the success of quality management implementation. Eleven questions are prepared and been discussed with the interviewees.

Keywords: interviews, quality, culture, Libyan industrial companies

Procedia PDF Downloads 519
8426 Financing Innovation: Differences across National Innovation Systems

Authors: Núria Arimany Serrat, Xavier Ferràs Hernández, Petra A. Nylund, Eric Viardot

Abstract:

Innovation is an increasingly important antecedent to firm competitiveness and growth. Successful innovation, however, requires a significant financial commitment and the means of financing accessible to the firm may affect its ability to innovate. The access to equity financing such as venture capital has been connected to innovativeness for young firms. For established enterprises, debt financing of innovation may be a more realistic option. Continuous innovation and growth would otherwise require a constant increase of equity. We, therefore, investigate the relation between debt financing and innovation for large firms and hypothesize that those firms that carry more debt will be more innovative. The need for debt financing of innovation may be reduced for very profitable firms, which can finance innovation with cash flow. We thus hypothesize a moderating effect of profitability on the relationship between debt financing and innovation. We carry out an empirical investigation using a longitudinal data set including 167 large European firms over five years, resulting in 835 firm years. We apply generalized least squares (GLS) regression with fixed firm effects to control for firm heterogeneity. The findings support our hypotheses and we conclude that access to debt finding is an important antecedent of innovation, with profitability as a moderating factor. The results do however differ across national innovation systems and we find a strong relationship for British, Dutch, French, and Italian firms but not for German and Spanish entities. We discuss differences in the national systems of innovation and financing which contextualize the variations in the findings and thus make a nuanced contribution to the research in innovation financing. The cross-country differences calls for differentiated advice to managers, institutions, and researchers depending on the national context.

Keywords: innovation, R&D, national innovation systems, financing

Procedia PDF Downloads 531
8425 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 105
8424 Effect of Plowing the Soil of Faba Bean on Soil Productivity and Quality Improvement

Authors: Khattab E. A., Gehan A. Amin

Abstract:

The aim of the experiment was to investigate yield and yield components under effect of three different tillage systems and three faba bean varieties on clay-loamy soils. The experiment was conducted as split plot design having tillage systems in main plot and varieties in subplot. A field trial was conducted during the winter seasons of 2021-2022 and 2022-2-23, respectively in private of the agricultural lands of Shobra Beddin village, which belongs to Mansoura District of Dakahlia Province 31°, (04457)- N latitude and 31°4757- E longitude. The soil was prepared. The Seeds covered with a thin layer of soil, sown and watered. Three weeks later, the developed plants were thinned. Finally, the plants collected after 110 days of growth. Growth, yield and chemical contents determined. The results showed that the highest yield in the traditional tillage system corresponds to the superior to other tillage systems. In addition, In the variety comparison, the Sakha 1 variety was characterized by the highest yield as well as the highest values of plant growth properties among the three varieties. Conclusion: The traditional tillage system is increase grain yield of variety Sakha 1 compared with other varieties.

Keywords: yield, tillage system, varieties, faba bean

Procedia PDF Downloads 67