Search results for: multiple emulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4918

Search results for: multiple emulsion

3358 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 143
3357 Optimization of Electrical Discharge Machining Parameters in Machining AISI D3 Tool Steel by Grey Relational Analysis

Authors: Othman Mohamed Altheni, Abdurrahman Abusaada

Abstract:

This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulsed current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg. Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters are simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were used

Keywords: edm parameters, grey relational analysis, Taguchi method, ANOVA

Procedia PDF Downloads 293
3356 Class-Size and Instructional Materials as Correlates of Pupils Learning and Academic Achievement in Primary School

Authors: Aanuoluwapo Olusola Adesanya, Adesina Joseph

Abstract:

This paper examined the class-size and instructional materials as correlates of pupils learning and academic achievement in primary school. The population of the study comprised 198 primary school pupils in three selected schools in Ogun State, Nigeria. Data were collected through questionnaire and were analysed with the use of multiple regression and ANOVA to analysed the correlation between class-size, instructional materials (independent variables) and learning achievement (dependent variable). The findings revealed that schools having an average class-size of 30 and below with use of instructional materials obtained better results than schools having more than 30 and above. The main score were higher in the school in schools having 30 and below than schools with 30 and above. It was therefore recommended that government, stakeholders and NGOs should provide more classrooms and supply of adequate instructional materials in all primary schools in the state to cater for small class-size.

Keywords: class-size, instructional materials, learning, academic achievement

Procedia PDF Downloads 349
3355 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools

Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson

Abstract:

Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.

Keywords: BIM, data exchange, interoperability issues, lighting simulations

Procedia PDF Downloads 237
3354 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet

Abstract:

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheel-rail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Keywords: new test rig, rolling contact fatigue, rail, small scale

Procedia PDF Downloads 481
3353 Determinants of Life Satisfaction in Canada: A Causal Modelling Approach

Authors: Rose Branch-Allen, John Jayachandran

Abstract:

Background and purpose: Canada is a pluralistic, multicultural society with an ethno-cultural composition that has been shaped over time by immigrants and their descendants. Although Canada welcomes these immigrants, many will endure hardship and assimilation difficulties. Despite these life hurdles, surveys consistently disclose high life satisfaction for all Canadians. Most research studies on Life Satisfaction/ Subjective Wellbeing (SWB) have focused on one main determinant and a variety of social demographic variables to delineate the determinants of life satisfaction. However, very few research studies examine life satisfaction from a holistic approach. In addition, we need to understand the causal pathways leading to life satisfaction, and develop theories that explain why certain variables differentially influence the different components of SWB. The aim this study was to utilize a holistic approach to construct a causal model and identify major determinants of life satisfaction. Data and measures: This study utilized data from the General Social Survey, with a sample size of 19, 597. The exogenous concepts included age, gender, marital status, household size, socioeconomic status, ethnicity, location, immigration status, religiosity, and neighborhood. The intervening concepts included health, social contact, leisure, enjoyment, work-family balance, quality time, domestic labor, and sense of belonging. The endogenous concept life satisfaction was measured by multiple indicators (Cronbach’s alpha = .83). Analysis: Several multiple regression models were run sequentially to estimate path coefficients for the causal model. Results: Overall, above average satisfaction with life was reported for respondents with specific socio-economic, demographic and lifestyle characteristics. With regard to exogenous factors, respondents who were female, younger, married, from high socioeconomic status background, born in Canada, very religious, and demonstrated high level of neighborhood interaction had greater satisfaction with life. Similarly, intervening concepts suggested respondents had greater life satisfaction if they had better health, more social contact, less time on passive leisure activities and more time on active leisure activities, more time with family and friends, more enjoyment with volunteer activities, less time on domestic labor and a greater sense of belonging to the community. Conclusions and Implications: Our results suggest that a holistic approach is necessary for establishing determinants of life satisfaction, and that life satisfaction is not merely comprised of positive or negative affect rather understanding the causal process of life satisfaction. Even though, most of our findings are consistent with previous studies, a significant number of causal connections contradict some of the findings in literature today. We have provided possible explanation for these anomalies researchers encounter in studying life satisfaction and policy implications.

Keywords: causal model, holistic approach, life satisfaction, socio-demographic variables, subjective well-being

Procedia PDF Downloads 353
3352 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network

Authors: Ehsan Motamedian

Abstract:

Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.

Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions

Procedia PDF Downloads 432
3351 Delegation or Assignment: Registered Nurses’ Ambiguity in Interpreting Their Scope of Practice in Long Term Care Settings

Authors: D. Mulligan, D. Casey

Abstract:

Introductory Statement: Delegation is when a registered nurse (RN) transfers a task or activity that is normally within their scope of practice to another person (delegatee). RN delegation is common practice with unregistered staff, e.g., student nurses and health care assistants (HCAs). As the role of the HCA is increasingly embedded as a direct care and support role, especially in long-term residential care for older adults, there is RN uncertainty as to their role as a delegator. The assignment is when a task is transferred to a person that is within the role specification of the delegatee. RNs in long-term care (LTC) for older people are increasingly working in teams where there are less RNs and more HCAs providing direct care to the residents. The RN is responsible and accountable for their decision to delegate and assign tasks to HCAs. In an interpretive, multiple case studies to explore how delegation of tasks by RNs to HCAs occurred in long-term care settings in Ireland the importance of the RN understanding their scope of practice emerged. Methodology: Focus group interviews and individual interviews were undertaken as part of a multiple case study. Both cases, anonymized as Case A and Case B, were within the public health service in Ireland. The case study sites were long-term care settings for older adults located in different social care divisions, and in different geographical areas. Four focus group interviews with staff nurses and three individual interviews with CNMs were undertaken. The interactive data analysis approach was the analytical framework used, with within-case and cross-case analysis. The theoretical lens of organizational role theory, applying the role episode model (REM), was used to understand, interpret, and explain the findings. Study Findings: RNs and CNMs understood the role of the nurse regulator and the scope of practice. RNs understood that the RN was accountable for the care and support provided to residents. However, RNs and CNM2s could not describe delegation in the context of their scope of practice. In both cases, the RNs did not have a standardized process for assessing HCA competence to undertake nursing tasks or interventions. RNs did not routinely supervise HCAs. Tasks were assigned and not delegated. There were differences between the cases in relation to understanding which nursing tasks required delegation. HCAs in Case A undertook clinical vital sign assessments and documentation. HCAs in Case B did not routinely undertake these activities. Delegation and assignment were influenced by the organizational factors, e.g., model of care, absence of delegation policies, inadequate RN education on delegation, and a lack of RN and HCA role clarity. Concluding Statement: Nurse staffing levels and skill mix in long-term care settings continue to change with more HCAs providing more direct care and support. With decreasing RN staffing levels RNs will be required to delegate and assign more direct care to HCAs. There is a requirement to distinguish between RN assignment and delegation at policy, regulation, and organizational levels.

Keywords: assignment, delegation, registered nurse, scope of practice

Procedia PDF Downloads 153
3350 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments

Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán

Abstract:

Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.

Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models

Procedia PDF Downloads 147
3349 The Roles of Pay Satisfaction and Intent to Leave on Counterproductive Work Behavior among Non-Academic University Employees

Authors: Abiodun Musbau Lawal, Sunday Samson Babalola, Uzor Friday Ordu

Abstract:

Issue of employees counterproductive work behavior in government owned organization in emerging economies has continued to be a major concern. This study investigated the factors of pay satisfaction, intent to leave and age as predictors of counterproductive work behavior among non-academic employee in a Nigerian federal government owned university. A sample of 200 non-academic employees completed questionnaires. Hierarchical multiple regression was conducted to determine the contribution of each of the predictor variables on the criterion variable on counterproductive work behavior. Results indicate that age of participants (β = -.18; p < .05) significantly independently predicted CWB by accounting for 3% of the explained variance. Addition of pay satisfaction (β = -.14; p < .05) significantly accounted for 5% of the explained variance, while intent to leave (β = -.17; p < .05) further resulted in 8% of the explained variance in counterproductive work behavior. The importance of these findings with regards to reduction in counterproductive work behavior is highlighted.

Keywords: counterproductive, work behaviour, pay satisfaction, intent to leave

Procedia PDF Downloads 379
3348 Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles

Authors: Mohamed Elbehery

Abstract:

Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit.

Keywords: nanoparticles, enzymes, immobilization, textiles

Procedia PDF Downloads 97
3347 Optimal Power Exchange of Multi-Microgrids with Hierarchical Coordination

Authors: Beom-Ryeol Choi, Won-Poong Lee, Jin-Young Choi, Young-Hak Shin, Dong-Jun Won

Abstract:

A Microgrid (MG) has a major role in power system. There are numerous benefits, such as ability to reduce environmental impact and enhance the reliability of a power system. Hence, Multi-MG (MMG) consisted of multiple MGs is being studied intensively. This paper proposes the optimal power exchange of MMG with hierarchical coordination. The whole system architecture consists of two layers: 1) upper layer including MG of MG Center (MoMC) which is in charge of the overall management and coordination and 2) lower layer comprised of several Microgrid-Energy Management Systems (MG-EMSs) which make a decision for own schedule. In order to accomplish the optimal power exchange, the proposed coordination algorithm is applied to MMG system. The objective of this process is to achieve optimal operation for improving economics under the grid-connected operation. The simulation results show how the output of each MG can be changed through coordination algorithm.

Keywords: microgrids, multi-microgrids, power exchange, hierarchical coordination

Procedia PDF Downloads 370
3346 The Factors Predicting Credibility of News in Social Media in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.

Keywords: credibility of news, behaviors and attitudes, social media, web board

Procedia PDF Downloads 467
3345 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization

Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed

Abstract:

The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.

Keywords: MRI, Em algorithm, brain, tumor, Nl-means

Procedia PDF Downloads 335
3344 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 91
3343 Implementation of a Culturally Responsive Home Visiting Framework in Head Start Teacher Professional Development

Authors: Meilan Jin, Mary Jane Moran

Abstract:

This study aims to introduce the framework of culturally responsive home visiting (CRHV) to head start teacher professional sessions in the Southeastern of the US and investigate its influence on the evolving beliefs of teachers about their roles and relationships with families in-home visits. The framework orients teachers to an effective way of taking on the role of learner to listen for spoken and unspoken needs and look for family strengths. In addition, it challenges the deficit model that is grounded on 'cultural deprivation,' and it stresses the value of family cultures and advocates equal, collaborative parent-teacher relationships. The home visit reflection papers and focus group transcriptions of eight teachers have been collected since 2010 throughout a five-year longitudinal collaboration with them. Reflection papers were written by the teachers before and after introducing the CRHV framework, including the details of visit purposes and actions and their plans for later home visits. Particularly, the CRHV framework guided the teachers to listen and look for information about family-living environments; parent-child interactions; child-rearing practices; and parental beliefs, values, and needs. Two focus groups were organized in 2014 by asking the teachers to read their written reflection papers and then discussing their shared beliefs and experiences of home visits in recent years. The average length of the discussions was one hour, and the discussions were audio-recorded and transcribed verbatim. Moreover, the data were analyzed using constant comparative analysis, and the analysis was verified through (a) the uses of multiple data sources, (b) the involvement of multiple researchers, (c) coding checks, and (d) the provisions of the thick descriptions of the findings. The study findings corroborate that the teachers become to reposition themselves as 'knowledge seekers' through reorienting their cynosure toward 'setting stones' to learn, grow, and change rather than framing their home visits. The teachers also continually engage in careful listening, observing, questioning, and dialoguing, and these actions reflect their care toward parents. The value of teamwork with parents is advocated, and the teachers recognize that when parents feel empowered, they are active and committed to doing more for their children, which can further advantage proactive long-term parent-teacher collaborations. The study findings also validate that the framework is influential for educators to provide the experiences of home visiting that is culturally responsive and to share collaborative relationships with caregivers. The long-term impact of the framework further implies that teachers continue to put themselves in the position of evolving, including beliefs and actions, to better work with children and families who are culturally, ethnically, and linguistically different from them. This framework can be applicable to educators and professionals who are looking for avenues to bridge the relationship between home and school and parents and teachers.

Keywords: culturally responsive home visit, early childhood education, parent–teacher collaboration, teacher professional development

Procedia PDF Downloads 96
3342 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 525
3341 A Study on the Reliability Evaluation of a Timer Card for Air Dryer of the Railway Vehicle

Authors: Chul Su Kim, Jun Ku Lee, Won Jun Lee

Abstract:

The EMU (electric multiple unit) vehicle timer card is a PCB (printed circuit board) for controlling the air-dryer to remove the moisture of the generated air from the air compressor of the braking device. This card is exposed to the lower part of the railway vehicle, so it is greatly affected by the external environment such as temperature and humidity. The main cause of the failure of this timer card is deterioration of soldering area of the PCB surface due to temperature and humidity. Therefore, in the viewpoint of preventive maintenance, it is important to evaluate the reliability of the timer card and predict the replacement cycle to secure the safety of the air braking device is one of the main devices for driving. In this study, the existing and the improved products were evaluated on the reliability through ALT (accelerated life test). In addition, the acceleration factor by the 'Coffin-Manson' equation was obtained, and the remaining lifetime was compared and examined.

Keywords: reliability evaluation, timer card, Printed Circuit Board, Accelerated Life Test

Procedia PDF Downloads 277
3340 Impacts of Racialization: Exploring the Relationships between Racial Discrimination, Racial Identity, and Activism

Authors: Brianna Z. Ross, Jonathan N. Livingston

Abstract:

Given that discussions of racism and racial tensions have become more salient, there is a need to evaluate the impacts of racialization among Black individuals. Racial discrimination has become one of the most common experiences within the Black American population. Likewise, Black individuals have indicated a need to address their racial identities at an earlier age than their non-Black peers. Further, Black individuals have been found at the forefront of multiple social and political movements, including but not limited to the Civil Rights Movement, Black Lives Matter, MeToo, and Say Her Name. Moreover, the present study sought to explore the predictive relationships that exist between racial discrimination, racial identity, and activism in the Black community. The results of standard and hierarchical regression analyses revealed that racial discrimination and racial identity significantly predict each other, but only racial discrimination is a significant predictor for the relationship to activism. Nonetheless, the results from this study will provide a basis for social scientists to better understand the impacts of racialization on the Black American population.

Keywords: activism, racialization, racial discrimination, racial identity

Procedia PDF Downloads 150
3339 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 607
3338 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations

Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana

Abstract:

Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.

Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS

Procedia PDF Downloads 260
3337 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 149
3336 A Comprehensive Study on CO₂ Capture and Storage: Advances in Technology and Environmental Impact Mitigation

Authors: Oussama Fertaq

Abstract:

This paper investigates the latest advancements in CO₂ capture and storage (CCS) technologies, which are vital for addressing the growing challenge of climate change. The study focuses on multiple techniques for CO₂ capture, including chemical absorption, membrane separation, and adsorption, analyzing their efficiency, scalability, and environmental impact. The research further explores geological storage options such as deep saline aquifers and depleted oil fields, providing insights into the challenges and opportunities presented by each method. This paper emphasizes the importance of integrating CCS with existing industrial processes to reduce greenhouse gas emissions effectively. It also discusses the economic and policy frameworks required to promote wider adoption of CCS technologies. The findings of this study offer a comprehensive view of the potential of CCS in achieving global climate goals, particularly in hard-to-abate sectors such as energy and manufacturing.

Keywords: CO₂ capture, carbon storage, climate change mitigation, carbon sequestration, environmental sustainability

Procedia PDF Downloads 10
3335 Virtual Computing Lab for Phonics Development among Deaf Students

Authors: Ankita R. Bansal, Naren S. Burade

Abstract:

Idea is to create a cloud based virtual lab for Deaf Students, “A language acquisition program using Visual Phonics and Cued Speech” using VMware Virtual Lab. This lab will demonstrate students the sounds of letters associated with the Language, building letter blocks, making words, etc Virtual labs are used for demos, training, for the Lingual development of children in their vernacular language. The main potential benefits are reduced labour and hardware costs, faster response times to users. Virtual Computing Labs allows any of the software as a service solutions, virtualization solutions, and terminal services solutions available today to offer as a service on demand, where a single instance of the software runs on the cloud and services multiple end users. VMWare, XEN, MS Virtual Server, Virtuoso, and Citrix are typical examples.

Keywords: visual phonics, language acquisition, vernacular language, cued speech, virtual lab

Procedia PDF Downloads 598
3334 Impact of Risk Management Practices on Company Performance

Authors: Syed Atif Ali, Farzan Yahya

Abstract:

This research paper covers the issue of risk management impact on the company performance. Degree of financial leverage (DFL), degree of operating leverage (DOL) and the working capital ratio (WCR) are taken as independent variables which are the representative of risk and the earning price per share (EPS), return on assets (ROA), return on equity (ROE), Sales and Net profits which are the representative of performance. Last 10 years (2004-2013) of Cement sector of Pakistan data is chosen as sample for analyze their relations by multiple regression technique. Through analyses, it is found that WCR impact adequately on the company performance because if company has enough liquidity than it perform its operations smoothly and enhance its performance very well. DFL should be control moderately because enough DFL leads performance of company downward. On the other hand, the DOL should be less because it causes the less profitability for a company from its operations.

Keywords: degree of financial leverage (DFL), degree of operating leverage (DOL), working capital ratio (WCR), earning per share (EPS), return on equity (ROE), return on assets (ROA)

Procedia PDF Downloads 452
3333 The Application on Interactivity of Light in New Media Art

Authors: Yansong Chen

Abstract:

In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth.

Keywords: new media art, interaction design, light art, immersion

Procedia PDF Downloads 233
3332 Passive Attenuation with Multiple Resonator Rings for Musical Instruments Equalization

Authors: Lorenzo Bonoldi, Gianluca Memoli, Abdelhalim Azbaid El Ouahabi

Abstract:

In this paper, a series of ring-shaped attenuators utilizing Helmholtz and quarter wavelength resonators in variable, fixed, and combined configurations have been manufactured using a 3D printer. We illustrate possible uses by incorporating such devices into musical instruments (e.g. in acoustic guitar sound holes) and audio speakers with a view to controlling such devices tonal emissions without electronic equalization systems. Numerical investigations into the transmission loss values of these ring-shaped attenuators using finite element method simulations (COMSOL Multiphysics) have been presented in the frequency range of 100– 1000 Hz. We compare such results for each attenuator model with experimental measurements using different driving sources such as white noise, a maximum-length sequence (MLS), square and sine sweep pulses, and point scans in the frequency domain. Finally, we present a preliminary discussion on the comparison of numerical and experimental results.

Keywords: equaliser, metamaterials, musical, instruments

Procedia PDF Downloads 172
3331 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 244
3330 Determination of Frequency Relay Setting during Distributed Generators Islanding

Authors: Tarek Kandil, Ameen Ali

Abstract:

Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.

Keywords: frequency relay, distributed generation, islanding detection, relay setting

Procedia PDF Downloads 532
3329 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78