Search results for: improved sparrow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9455

Search results for: improved sparrow search algorithm

7895 The Survey Research and Evaluation of Green Residential Building Based on the Improved Group Analytical Hierarchy Process Method in Yinchuan

Authors: Yun-na Wu, Zhen Wang

Abstract:

Due to the economic downturn and the deterioration of the living environment, the development of residential buildings as high energy consuming building is gradually changing from “extensive” to green building in China. So, the evaluation system of green building is continuously improved, but the current evaluation work has the following problems: (1) There are differences in the cost of the actual investment and the purchasing power of residents, also construction target of green residential building is single and lacks multi-objective performance development. (2) Green building evaluation lacks regional characteristics and cannot reflect the different regional residents demand. (3) In the process of determining the criteria weight, the experts’ judgment matrix is difficult to meet the requirement of consistency. Therefore, to solve those problems, questionnaires which are about the green residential building for Ningxia area are distributed, and the results of questionnaires can feedback the purchasing power of residents and the acceptance of the green building cost. Secondly, combined with the geographical features of Ningxia minority areas, the evaluation criteria system of green residential building is constructed. Finally, using the improved group AHP method and the grey clustering method, the criteria weight is determined, and a real case is evaluated, which is located in Xing Qing district, Ningxia. A conclusion can be obtained that the professional evaluation for this project and good social recognition is basically the same.

Keywords: evaluation, green residential building, grey clustering method, group AHP

Procedia PDF Downloads 397
7894 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 320
7893 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System

Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho

Abstract:

This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.

Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile

Procedia PDF Downloads 84
7892 Managing Inter-Organizational Innovation Project: Systematic Review of Literature

Authors: Lamin B Ceesay, Cecilia Rossignoli

Abstract:

Inter-organizational collaboration is a growing phenomenon in both research and practice. The partnership between organizations enables firms to leverage external resources, experiences, and technology that lie with other firms. This collaborative practice is a source of improved business model performance, technological advancement, and increased competitive advantage for firms. However, the competitive intents, and even diverse institutional logics of firms, make inter-firm innovation-based partnership even more complex, and its governance more challenging. The purpose of this paper is to present a systematic review of research linking the inter-organizational relationship of firms with their innovation practice and specify the different project management issues and gaps addressed in previous research. To do this, we employed a systematic review of the literature on inter-organizational innovation using two complementary scholarly databases - ScienceDirect and Web of Science (WoS). Article scoping relies on the combination of keywords based on similar terms used in the literature:(1) inter-organizational relationship, (2) business network, (3) inter-firm project, and (4) innovation network. These searches were conducted in the title, abstract, and keywords of conceptual and empirical research papers done in English. Our search covers between 2010 to 2019. We applied several exclusion criteria including Papers published outside the years under the review, papers in a language other than English, papers neither listed in WoS nor ScienceDirect and papers that are not sharply related to the inter-organizational innovation-based partnership were removed. After all relevant search criteria were applied, a final list of 84 papers constitutes the data for this review. Our review revealed an increasing evolution of inter-organizational relationship research during the period under the review. The descriptive analysis of papers according to Journal outlets finds that International Journal of Project Management (IJPM), Journal of Industrial Marketing, Journal of Business Research (JBR), etc. are the leading journal outlets for research in the inter-organizational innovation project. The review also finds that Qualitative methods and quantitative approaches respectively are the leading research methods adopted by scholars in the field. However, literature review and conceptual papers constitute the least in the field. During the content analysis of the selected papers, we read the content of each paper and found that the selected papers try to address one of the three phenomena in inter-organizational innovation research: (1) project antecedents; (2) project management and (3) project performance outcomes. We found that these categories are not mutually exclusive, but rather interdependent. This categorization also helped us to organize the fragmented literature in the field. While a significant percentage of the literature discussed project management issues, we found fewer extant literature on project antecedents and performance. As a result of this, we organized the future research agenda addressed in several papers by linking them with the under-researched themes in the field, thus providing great potential to advance future research agenda especially, in the under-researched themes in the field. Finally, our paper reveals that research on inter-organizational innovation project is generally fragmented which hinders a better understanding of the field. Thus, this paper contributes to the understanding of the field by organizing and discussing the extant literature to advance the theory and application of inter-organizational relationship.

Keywords: inter-organizational relationship, inter-firm collaboration, innovation projects, project management, systematic review

Procedia PDF Downloads 113
7891 Rounding Technique's Application in Schnorr Signature Algorithm: Known Partially Most Significant Bits of Nonce

Authors: Wenjie Qin, Kewei Lv

Abstract:

In 1996, Boneh and Venkatesan proposed the Hidden Number Problem (HNP) and proved the most significant bits (MSB) of computational Diffie-Hellman key exchange scheme and related schemes are unpredictable bits. They also gave a method which is a lattice rounding technique to solve HNP in non-uniform model. In this paper, we put forward a new concept that is Schnorr-MSB-HNP. We also reduce the problem of solving Schnorr signature private key with a few consecutive most significant bits of random nonce (used at each signature generation) to Schnorr-MSB-HNP, then we use the rounding technique to solve the Schnorr-MSB-HNP. We have come to the conclusion that if there is a ‘miraculous box’ which inputs the random nonce and outputs 2loglogq (q is a prime number) most significant bits of nonce, the signature private key will be obtained by choosing 2logq signature messages randomly. Thus we get an attack on the Schnorr signature private key.

Keywords: rounding technique, most significant bits, Schnorr signature algorithm, nonce, Schnorr-MSB-HNP

Procedia PDF Downloads 233
7890 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation

Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran

Abstract:

Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.

Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning

Procedia PDF Downloads 490
7889 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking

Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye

Abstract:

The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.

Keywords: algorithm, cryptography, cryptosystem, network

Procedia PDF Downloads 349
7888 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)

Procedia PDF Downloads 152
7887 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation

Authors: M. Farnush

Abstract:

This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.

Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics

Procedia PDF Downloads 318
7886 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: function tuner method (FTM), fuzzy modeling, fuzzy PID controller, genetic algorithm (GA)

Procedia PDF Downloads 309
7885 Design and Implementation of a Hardened Cryptographic Coprocessor with 128-bit RISC-V Core

Authors: Yashas Bedre Raghavendra, Pim Vullers

Abstract:

This study presents the design and implementation of an abstract cryptographic coprocessor, leveraging AMBA(Advanced Microcontroller Bus Architecture) protocols - APB (Advanced Peripheral Bus) and AHB (Advanced High-performance Bus), to enable seamless integration with the main CPU(Central processing unit) and enhance the coprocessor’s algorithm flexibility. The primary objective is to create a versatile coprocessor that can execute various cryptographic algorithms, including ECC(Elliptic-curve cryptography), RSA(Rivest–Shamir–Adleman), and AES (Advanced Encryption Standard) while providing a robust and secure solution for modern secure embedded systems. To achieve this goal, the coprocessor is equipped with a tightly coupled memory (TCM) for rapid data access during cryptographic operations. The TCM is placed within the coprocessor, ensuring quick retrieval of critical data and optimizing overall performance. Additionally, the program memory is positioned outside the coprocessor, allowing for easy updates and reconfiguration, which enhances adaptability to future algorithm implementations. Direct links are employed instead of DMA(Direct memory access) for data transfer, ensuring faster communication and reducing complexity. The AMBA-based communication architecture facilitates seamless interaction between the coprocessor and the main CPU, streamlining data flow and ensuring efficient utilization of system resources. The abstract nature of the coprocessor allows for easy integration of new cryptographic algorithms in the future. As the security landscape continues to evolve, the coprocessor can adapt and incorporate emerging algorithms, making it a future-proof solution for cryptographic processing. Furthermore, this study explores the addition of custom instructions into RISC-V ISE (Instruction Set Extension) to enhance cryptographic operations. By incorporating custom instructions specifically tailored for cryptographic algorithms, the coprocessor achieves higher efficiency and reduced cycles per instruction (CPI) compared to traditional instruction sets. The adoption of RISC-V 128-bit architecture significantly reduces the total number of instructions required for complex cryptographic tasks, leading to faster execution times and improved overall performance. Comparisons are made with 32-bit and 64-bit architectures, highlighting the advantages of the 128-bit architecture in terms of reduced instruction count and CPI. In conclusion, the abstract cryptographic coprocessor presented in this study offers significant advantages in terms of algorithm flexibility, security, and integration with the main CPU. By leveraging AMBA protocols and employing direct links for data transfer, the coprocessor achieves high-performance cryptographic operations without compromising system efficiency. With its TCM and external program memory, the coprocessor is capable of securely executing a wide range of cryptographic algorithms. This versatility and adaptability, coupled with the benefits of custom instructions and the 128-bit architecture, make it an invaluable asset for secure embedded systems, meeting the demands of modern cryptographic applications.

Keywords: abstract cryptographic coprocessor, AMBA protocols, ECC, RSA, AES, tightly coupled memory, secure embedded systems, RISC-V ISE, custom instructions, instruction count, cycles per instruction

Procedia PDF Downloads 70
7884 Enhancing the Piezoelectric, Thermal, and Structural Properties of the PVDF-HFP/PZT/GO Composite for Improved Mechanical Energy Harvesting

Authors: Salesabil Labihi, Adil Eddiai, Mounir El Achaby, Mounir Meddad, Omar Cherkaoui, M’hammed Mazroui

Abstract:

Piezoelectric materials provide a promising renewable energy source by converting mechanical energy into electrical energy through pressure and vibration. This study focuses on improving the conversion performance of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by incorporating graphene oxide (GO) and lead zirconate titanate (PZT). The dispersion of PZT and GO within the PVDF-HFP matrix was found to be homogeneous, resulting in high piezoelectric performance with an increase in the β-phase content. The thermal stability of the PVDF-HFP polymer also improved with the addition of PZT/GO. However, as the percentage of PZT/GO increased, the young's modulus of the composite decreased significantly. The developed composite demonstrated promising performance as a potential candidate for energy harvesting applications.

Keywords: energy harvesting, mechanical conversion, piezoelectric composite, solvent casting method

Procedia PDF Downloads 82
7883 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices

Authors: Mirvat Shamseddine, Issam Lakkis

Abstract:

We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.

Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows

Procedia PDF Downloads 299
7882 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy

Authors: Bara Yousef

Abstract:

The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.

Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability

Procedia PDF Downloads 381
7881 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 414
7880 Person Re-Identification using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese

Procedia PDF Downloads 72
7879 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 104
7878 Matching on Bipartite Graphs with Applications to School Course Registration Systems

Authors: Zhihan Li

Abstract:

Nowadays, most universities use the course enrollment system considering students’ registration orders. However, the students’ preference level to certain courses is also one important factor to consider. In this research, the possibility of applying a preference-first system has been discussed and analyzed compared to the order-first system. A bipartite graph is applied to resemble the relationship between students and courses they tend to register. With the graph set up, we apply Ford-Fulkerson (F.F.) Algorithm to maximize parings between two sets of nodes, in our case, students and courses. Two models are proposed in this paper: the one considered students’ order first, and the one considered students’ preference first. By comparing and contrasting the two models, we highlight the usability of models which potentially leads to better designs for school course registration systems.

Keywords: bipartite graph, Ford-Fulkerson (F.F.) algorithm, graph theory, maximum matching

Procedia PDF Downloads 111
7877 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
7876 Real-Time Web Map Service Based on Solar-Powered Unmanned Aerial Vehicle

Authors: Sunghun Jung

Abstract:

The existing web map service providers contract with the satellite operators to update their maps by paying an astronomical amount of money, but the cost could be minimized by operating a cheap and small UAV. In contrast to the satellites, we only need to replace aged battery packs from time to time for the usage of UAVs. Utilizing both a regular camera and an infrared camera mounted on a small, solar-powered, long-endurance, and hoverable UAV, daytime ground surface photographs, and nighttime infrared photographs will be continuously and repeatedly uploaded to the web map server and overlapped with the existing ground surface photographs in real-time. The real-time web map service using a small, solar-powered, long-endurance, and hoverable UAV can also be applied to the surveillance missions, in particular, to detect border area intruders. The improved real-time image stitching algorithm is developed for the graphic map data overlapping. Also, a small home server will be developed to manage the huge size of incoming map data. The map photographs taken at tens or hundreds of kilometers by a UAV would improve the map graphic resolution compared to the map photographs taken at thousands of kilometers by satellites since the satellite photographs are limited by weather conditions.

Keywords: long-endurance, real-time web map service (RWMS), solar-powered, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 274
7875 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 535
7874 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 251
7873 Development of Construction Cost Optimization System Using Genetic Algorithm Method

Authors: Hyeon-Seung Kim, Young-Hwan Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang

Abstract:

The project budget at the planned stage might be changed by the insufficient government budget or the design change. There are many cases more especially in the case of a project performed for a long period of time. If the actual construction budget is insufficient comparing with the planned budget, the construction schedule should also be changed to match the changed budget. In that case, most project managers change the planned construction schedule by a heuristic approach without a reasonable consideration on the work priority. This study suggests an optimized methodology to modify the construction schedule according to the changed budget. The genetic algorithm was used to optimize the modified construction schedule within the changed budget. And a simulation system of construction cost histogram in accordance with the construction schedule was developed in the BIM (Building Information Modeling) environment.

Keywords: 5D, BIM, GA, cost optimization

Procedia PDF Downloads 588
7872 Reactive X Proactive Searches on Internet After Leprosy Institutional Campaigns in Brazil: A Google Trends Analysis

Authors: Paulo Roberto Vasconcellos-Silva

Abstract:

The "Janeiro Roxo" (Purple January) campaign in Brazil aims to promote awareness of leprosy and its early symptoms. The COVID-19 pandemic has adversely affected institutional campaigns, mostly considering leprosy a neglected disease by the media. Google Trends (GT) is a tool that tracks user searches on Google, providing insights into the popularity of specific search terms. Our prior research has categorized online searches into two types: "Reactive searches," driven by transient campaign-related stimuli, and "Proactive searches," driven by personal interest in early symptoms and self-diagnosis. Using GT we studied: (i) the impact of "Janeiro Roxo" on public interest in leprosy (assessed through reactive searches) and its early symptoms (evaluated through proactive searches) over the past five years; (ii) changes in public interest during and after the COVID-19 pandemic; (iii) patterns in the dynamics of reactive and proactive searches Methods: We used GT's "Relative Search Volume" (RSV) to gauge public interest on a scale from 0 to 100. "HANSENÍASE" (HAN) was a proxy for reactive searches, and "HANSENÍASE SINTOMAS" (leprosy symptoms) (H.SIN) for proactive searches (interest in leprosy or in self-diagnosis). We analyzed 261 weeks of data from 2018 to 2023, using polynomial trend lines to model trends over this period. Analysis of Variance (ANOVA) was used to compare weekly RSV, monthly (MM) and annual means (AM). Results: Over a span of 261 weeks, there was consistently higher Relative Search Volume (RSV) for HAN compared to H.SIN. Both search terms exhibited their highest (MM) in January months during all periods. COVID-19 pandemic: a decline was observed during the pandemic years (2020-2021). There was a 24% decrease in RSV for HAN and a 32.5% decrease for H.SIN. Both HAN and H.SIN regained their pre-pandemic search levels in January 2022-2023. Breakpoints indicated abrupt changes - in the 26th week (February 2019), 55th and 213th weeks (September 2019 and 2022) related to September regional campaigns (interrupted in 2020-2021). Trend lines for HAN exhibited an upward curve between 33rd-45th week (April to June 2019), a pandemic-related downward trend between 120th-136th week (December 2020 to March 2021), and an upward trend between 220th-240th week (November 2022 to March 2023). Conclusion: The "Janeiro Roxo" campaign, along with other media-driven activities, exerts a notable influence on both reactive and proactive searches related to leprosy topics. Reactive searches, driven by campaign stimuli, significantly outnumber proactive searches. Despite the interruption of the campaign due to the pandemic, there was a subsequent resurgence in both types of searches. The recovery observed in reactive and proactive searches post-campaign interruption underscores the effectiveness of such initiatives, particularly at the national level. This suggests that regional campaigns aimed at leprosy awareness can be considered highly successful in stimulating proactive public engagement. The evaluation of internet-based campaign programs proves valuable not only for assessing their impact but also for identifying the needs of vulnerable regions. These programs can play a crucial role in integrating regions and highlighting their needs for assistance services in the context of leprosy awareness.

Keywords: health communication, leprosy, health campaigns, information seeking behavior, Google Trends, reactive searches, proactive searches, leprosy early identification

Procedia PDF Downloads 61
7871 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 210
7870 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 311
7869 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking

Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang

Abstract:

The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.

Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking

Procedia PDF Downloads 92
7868 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 222
7867 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 148
7866 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features

Authors: Stylianos Kampakis

Abstract:

This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.

Keywords: neural networks, feature selection, regularization, aggressive reweighting

Procedia PDF Downloads 455