Search results for: deep learning model
21556 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 40021555 Organizational Learning, Job Satisfaction and Work Performance among Nurses
Authors: Rafia Rafique, Arifa Khadim
Abstract:
This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.Keywords: counterproductive work behavior, nurses, organizational learning, work performance
Procedia PDF Downloads 44521554 Effectiveness of Online Language Learning
Authors: Shazi Shah Jabeen, Ajay Jesse Thomas
Abstract:
The study is aimed at understanding the learning trends of students who opt for online language courses and to assess the effectiveness of the same. Multiple factors including use of the latest available technology and the skills that are trained by these online methods have been assessed. An attempt has been made to answer how each of the various language skills is trained online and how effective the online methods are compared to the classroom methods when students interact with peers and instructor. A mixed method research design was followed for collecting information for the study where a survey by means of a questionnaire and in-depth interviews with a number of respondents were undertaken across the various institutes and study centers located in the United Arab Emirates. The questionnaire contained 19 questions which included 7 sub-questions. The study revealed that the students find learning with an instructor to be a lot more effective than learning alone in an online environment. They prefer classroom environment more than the online setting for language learning.Keywords: effectiveness, language, online learning, skills
Procedia PDF Downloads 58921553 Using the Synchronous Online Flipped Learning Approach to Facilitate Student Podcasting
Authors: Yasmeen Coaxum
Abstract:
The year 2020 became synonymous with the words “Emergency Remote Teaching,” which was imposed upon educators during the COVID-19 pandemic. Consequently, teachers were compelled to find new and engaging ways to educate their students outside of the face-to-face classroom setting. Now online instruction has become more of the norm rather than a way to manage educational expectations during a crisis. Therefore, implementing a strategic way to create online environments for students to thrive, create, and fully engage in their learning process is essential. The Synchronous Online Flipped Learning Approach or SOFLA® is a distance learning model that most closely replicates actual classroom teaching. SOFLA® includes structured, interactive, multimodal activities in an eight-step learning cycle with both asynchronous and synchronous components that foster autonomous and interactive learning among today’s online learners. The results of a pilot study in an Intensive English Program at a university, using SOFLA® methodology to facilitate podcasting in an online learning environment will be shared. Previous findings on student-produced podcasting projects have shown that students felt they improved their pronunciation, vocabulary, and speaking skills. However, few if any studies have been conducted on using a structured online flipped learning approach to facilitate such projects. Therefore, the purpose of this study is to assess the effect of using the SOFLA® framework to enhance optimum engagement in the online environment while using podcasts as the primary tool of instruction. Through data from interviews, questionnaires, and the results of formative and summative assessments, this study also investigates the affective and academic impact this flipped learning method combined with podcasting has on the students in terms of speaking confidence and vocabulary retention, and production. The steps of SOFLA will be illustrated, a video demonstration of the Anchor podcasting app will be shown, and final student projects and questionnaire responses will be shared. The specific context is a 14-week advanced level conversation and listening class. Participants vary in age but are all adult language learners representing a diverse array of countries.Keywords: mall online flipped learning, podcasting, productive vocabulary
Procedia PDF Downloads 17621552 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 7421551 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 5321550 Innovation of e-Learning for Architectural Design Courses at the University of Jordan
Authors: Samer Abu Ghazaleh, Jawdat Gousous
Abstract:
E-learning in general started in Jordan around ten years ago in universities and at different departments and colleges. This paper will investigate the possibility to apply e-learning in architecture department at University of Jordan. As known architecture departments in general depend greatly in its syllabus upon design courses and studios, which consists nearly one third of its total credit hours. A survey has been conducted for architectural students at the University of Jordan and several conclusions have been reached irrespective of age, gender and nationality of the students, where the main problem was the way of the communication between the tutor and the student.Keywords: cellular telephone, design courses, e-learning, internet
Procedia PDF Downloads 47021549 Teaching Physics: History, Models, and Transformation of Physics Education Research
Authors: N. Didiş Körhasan, D. Kaltakçı Gürel
Abstract:
Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.Keywords: pedagogy, physics, physics education, science education
Procedia PDF Downloads 26421548 Training Program for Kindergarden Teachers on Learning through Project Approach
Authors: Dian Hartiningsih, Miranda Diponegoro, Evita Eddie Singgih
Abstract:
In facing the 21st century, children need to be prepared in reaching their optimum development level which encompasses all aspect of growth and to achieve the learning goals which include not only knowledge and skill, but also disposition and feeling. Teachers as the forefront of education need to be equipped with the understanding and skill of a learning method which can prepare the children to face this 21st century challenge. Project approach is an approach which utilizes active learning which is beneficial for the children. Subject to this research are kindergarten teachers at Dwi Matra Kindergarten and Kirana Preschool. This research is a quantitative research using before and after study design. The result suggest that through preliminary training program on learning with project approach, the kindergarten teachers ability to explain project approach including understanding, benefit and stages of project approach have increased significantly, the teachers ability to design learning with project approach have also improved significantly. The result of learning design that the teachers had made shows a remarkable result for the first stage of the project approach; however the second and third design result was not as optimal. Challenges faced in the research will be elaborated further in the research discussion.Keywords: project approach, teacher training, learning method, kindergarten
Procedia PDF Downloads 33121547 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 12921546 Imparting Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do the m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in preparatory program for bachelor’s degree. This program is designed for the disadvantage learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 66621545 The Increasing Importance of the Role of AI in Higher Education
Authors: Joshefina Bengoechea Fernandez, Alex Bell
Abstract:
In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics
Procedia PDF Downloads 10421544 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 10421543 The Rigor and Relevance of the Mathematics Component of the Teacher Education Programmes in Jamaica: An Evaluative Approach
Authors: Avalloy McCarthy-Curvin
Abstract:
For over fifty years there has been widespread dissatisfaction with the teaching of Mathematics in Jamaica. Studies, done in the Jamaican context highlight that teachers at the end of training do not have a deep understanding of the mathematics content they teach. Little research has been done in the Jamaican context that targets the advancement of contextual knowledge on the problem to ultimately provide a solution. The aim of the study is to identify what influences this outcome of teacher education in Jamaica so as to remedy the problem. This study formatively evaluated the curriculum documents, assessments and the delivery of the curriculum that are being used in teacher training institutions in Jamaica to determine their rigor -the extent to which written document, instruction, and the assessments focused on enabling pre-service teachers to develop deep understanding of mathematics and relevance- the extent to which the curriculum document, instruction, and the assessments are focus on developing the requisite knowledge for teaching mathematics. The findings show that neither the curriculum document, instruction nor assessments ensure rigor and enable pre-service teachers to develop the knowledge and skills they need to teach mathematics effectively.Keywords: relevance, rigor, deep understanding, formative evaluation
Procedia PDF Downloads 23721542 Innovative Pictogram Chinese Characters Representation
Authors: J. H. Low, S. H. Hew, C. O. Wong
Abstract:
This paper proposes an innovative approach to represent the pictogram Chinese characters. The advantage of this representation is using an extraordinary to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution. The purpose of this innovative creation is to assistant the learner learning Chinese as second language (SCL) in Chinese language learning specifically on memorize Chinese characters. Commonly, the SCL will give up and frustrate easily while memorize the Chinese characters by rote. So, our innovative representation is able to help on memorize the Chinese character by the help of visually storytelling. This innovative representation enhances the Chinese language learning experience of SCL.Keywords: Chinese e-learning, innovative Chinese character representation, knowledge management, language learning
Procedia PDF Downloads 48721541 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.Keywords: happiness, learning satisfaction, students, Faculty of Management Science
Procedia PDF Downloads 31021540 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 1121539 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 24921538 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 13721537 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 20021536 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation
Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen
Abstract:
Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning
Procedia PDF Downloads 7421535 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 53421534 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality
Authors: Napasri Suwanajote
Abstract:
The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.Keywords: production process, OTOP, sufficiency economic philosophy, marketing management
Procedia PDF Downloads 23421533 Awareness and Utilization of E-Learning Technologies in Teaching and Learning of Human Kinetics and Health Education Courses in Nigeria Universities
Authors: Ibrahim Laro ABUBAKAR
Abstract:
The study examined the Availability and Utilization of E-Learning Technologies in Teaching of Human Kinetics and Health Education courses in Nigerian Universities, specifically, Universities in Kwara State. Two purposes were formulated to guide the study from which two research questions and two hypotheses were raised. The descriptive research design was used in the research. Three Hundred respondents (100 Lecturers and 200 Students) made up the population for the study. There was no sampling, as the population of the study was not much. A structured questionnaire tagged ‘Availability and Utilization of E-Learning Technologies in Teaching and Learning Questionnaire’ (AUETTLQ) was used for data collection. The questionnaire was subjected to face and content validation, and it was equally pilot tested. The validation yielded a reliability coefficient of 0.78. The data collected from the study were statistically analyzed using frequencies and percentage count for personal data of the respondents, mean and standard deviation to answer the research questions. The null hypotheses were tested at 0.05 level of significance using the independent t-test. One among other findings of this study showed that lecturers and Student are aware of synchronous e-learning technologies in teaching and learning of Human Kinetics and Health Education but often utilize the synchronous e-learning technologies. It was recommended among others that lecturers and Students should be sensitized through seminars and workshops on the need to maximally utilize available e-learning technologies in teaching and learning of Human Kinetics and Health Education courses in Universities.Keywords: awareness, utilization, E-Learning, technologies, human kinetics synchronous
Procedia PDF Downloads 11921532 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 7021531 Role of Feedbacks in Simulation-Based Learning
Authors: Usman Ghani
Abstract:
Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.Keywords: simulation, feedback, training, hands-on, labs
Procedia PDF Downloads 37721530 The Negative Effects of Controlled Motivation on Mathematics Achievement
Authors: John E. Boberg, Steven J. Bourgeois
Abstract:
The decline in student engagement and motivation through the middle years is well documented and clearly associated with a decline in mathematics achievement that persists through high school. To combat this trend and, very often, to meet high-stakes accountability standards, a growing number of parents, teachers, and schools have implemented various methods to incentivize learning. However, according to Self-Determination Theory, forms of incentivized learning such as public praise, tangible rewards, or threats of punishment tend to undermine intrinsic motivation and learning. By focusing on external forms of motivation that thwart autonomy in children, adults also potentially threaten relatedness measures such as trust and emotional engagement. Furthermore, these controlling motivational techniques tend to promote shallow forms of cognitive engagement at the expense of more effective deep processing strategies. Therefore, any short-term gains in apparent engagement or test scores are overshadowed by long-term diminished motivation, resulting in inauthentic approaches to learning and lower achievement. The current study focuses on the relationships between student trust, engagement, and motivation during these crucial years as students transition from elementary to middle school. In order to test the effects of controlled motivational techniques on achievement in mathematics, this quantitative study was conducted on a convenience sample of 22 elementary and middle schools from a single public charter school district in the south-central United States. The study employed multi-source data from students (N = 1,054), parents (N = 7,166), and teachers (N = 356), along with student achievement data and contextual campus variables. Cross-sectional questionnaires were used to measure the students’ self-regulated learning, emotional and cognitive engagement, and trust in teachers. Parents responded to a single item on incentivizing the academic performance of their child, and teachers responded to a series of questions about their acceptance of various incentive strategies. Structural equation modeling (SEM) was used to evaluate model fit and analyze the direct and indirect effects of the predictor variables on achievement. Although a student’s trust in teacher positively predicted both emotional and cognitive engagement, none of these three predictors accounted for any variance in achievement in mathematics. The parents’ use of incentives, on the other hand, predicted a student’s perception of his or her controlled motivation, and these two variables had significant negative effects on achievement. While controlled motivation had the greatest effects on achievement, parental incentives demonstrated both direct and indirect effects on achievement through the students’ self-reported controlled motivation. Comparing upper elementary student data with middle-school student data revealed that controlling forms of motivation may be taking their toll on student trust and engagement over time. While parental incentives positively predicted both cognitive and emotional engagement in the younger sub-group, such forms of controlling motivation negatively predicted both trust in teachers and emotional engagement in the middle-school sub-group. These findings support the claims, posited by Self-Determination Theory, about the dangers of incentivizing learning. Short-term gains belie the underlying damage to motivational processes that lead to decreased intrinsic motivation and achievement. Such practices also appear to thwart basic human needs such as relatedness.Keywords: controlled motivation, student engagement, incentivized learning, mathematics achievement, self-determination theory, student trust
Procedia PDF Downloads 21921529 [Keynote Talk]: Computer-Assisted Language Learning (CALL) for Teaching English to Speakers of Other Languages (TESOL/ESOL) as a Foreign Language (TEFL/EFL), Second Language (TESL/ESL), or Additional Language (TEAL/EAL)
Authors: Andrew Laghos
Abstract:
Computer-assisted language learning (CALL) is defined as the use of computers to help learn languages. In this study we look at several different types of CALL tools and applications and how they can assist Adults and Young Learners in learning the English language as a foreign, second or additional language. It is important to identify the roles of the teacher and the learners, and what the learners’ motivations are for learning the language. Audio, video, interactive multimedia games, online translation services, conferencing, chat rooms, discussion forums, social networks, social media, email communication, songs and music video clips are just some of the many ways computers are currently being used to enhance language learning. CALL may be used for classroom teaching as well as for online and mobile learning. Advantages and disadvantages of CALL are discussed and the study ends with future predictions of CALL.Keywords: computer-assisted language learning (CALL), teaching English as a foreign language (TEFL/EFL), adult learners, young learners
Procedia PDF Downloads 43421528 Japanese Language Learning Strategies : Case study student in Japanese subject part, Faculty of Humanities and Social Sciences, Suan Sunandha Rajabhat University
Authors: Pailin Klinkesorn
Abstract:
The research aimed to study the use of learning strategies for Japanese language among college students with different learning achievements who study Japanese as a foreign language in the Higher Education’s level. The survey was conducted by using a questionnaire adapted from Strategy Inventory for language Learning or SILL (Oxford, 1990), consisting of two parts: questions about personal data and questions about the use of learning strategies for Japanese language. The samples of college students in the Japanese language program were purposively selected from Suansunandha Rajabhat University. The data from the questionnaire was statistically analyzed by using mean scores and one-way ANOVA. The results showed that Social Strategies was used by the greatest number of college students, whereas Memory Strategies was used by the least number of students. The students in different levels used various strategies, including Memory Strategies, Cognitive Strategies, Metacognitive Strategies and Social Strategies, at the significance level of 0.05. In addition, the students with different learning achievements also used different strategies at the significance level of 0.05. Further studies can explore learning strategies of other groups of Japanese learners, such as university students or company employees. Moreover, learning strategies for language skills, including listening, speaking, reading and writing, can be analyzed for better understanding of learners’ characteristics and for teaching applications.Keywords: language learning strategies, achievement, Japanese, college students
Procedia PDF Downloads 39221527 A Study on Pakistani Students’ Attitude towards Learning Mathematics and Science at Secondary Level
Authors: Aroona Hashmi
Abstract:
Student’s success in Mathematics and Science depends upon their learning attitude towards both subjects. It also influences the participation rate of the learner. The present study was based on a survey of high school students about their attitude towards Mathematics and Science at Secondary level. Students of the both gender constitute the population of this study. Sample of the study was 276 students and 20 teachers from 10 Government schools from Lahore District. Questionnaire and interview were selected as tool for data collection. The results showed that Pakistani students’ positive attitude towards learning Mathematics and Science. There was a significance difference between the students’ attitude towards learning Mathematics and no significance difference was found in the students’ attitude towards learning Science at Secondary level.Keywords: attitude, mathematics, science, secondary level
Procedia PDF Downloads 472