Search results for: bipartite networks
1266 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1581265 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment
Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang
Abstract:
The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles
Procedia PDF Downloads 1151264 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications
Authors: Morsy Ahmed Morsy Ismail
Abstract:
In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia
Procedia PDF Downloads 1761263 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems
Authors: Craig Mahlasi
Abstract:
The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time
Procedia PDF Downloads 1641262 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 761261 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 1271260 Solving Ill-Posed Initial Value Problems for Switched Differential Equations
Authors: Eugene Stepanov, Arcady Ponosov
Abstract:
To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities
Procedia PDF Downloads 1871259 ICT Education: Digital History Learners
Authors: Lee Bih Ni, Elvis Fung
Abstract:
This article is to review and understand the new generation of students to understand their expectations and attitudes. There are a group of students on school projects, creative work, educational software and digital signal source, the use of social networking tools to communicate with friends and a part in the competition. Today's students have been described as the new millennium students. They use information and communication technology in a more creative and innovative at home than at school, because the information and communication technologies for different purposes, in the home, usually occur in school. They collaborate and communicate more effectively when they are at home. Most children enter school, they will bring about how to use information and communication technologies, some basic skills and some tips on how to use information and communication technology will provide a more advanced than most of the school's expectations. Many teachers can help students, however, still a lot of work, "tradition", without a computer, and did not see the "new social computing networks describe young people to learn and new ways of working life in the future", in the education system of the benefits of using a computer.Keywords: ICT education, digital history, new generation of students, benefits of using a computer
Procedia PDF Downloads 4061258 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases
Authors: Sergey Ermolin, Olga Ermolin
Abstract:
A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking
Procedia PDF Downloads 3401257 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 791256 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region
Authors: Luisa Müting, Wisnu Harto Adiwijoyo
Abstract:
Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration
Procedia PDF Downloads 1041255 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 1971254 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1831253 In-door Localization Algorithm and Appropriate Implementation Using Wireless Sensor Networks
Authors: Adeniran K. Ademuwagun, Alastair Allen
Abstract:
The relationship dependence between RSS and distance in an enclosed environment is an important consideration because it is a factor that can influence the reliability of any localization algorithm founded on RSS. Several algorithms effectively reduce the variance of RSS to improve localization or accuracy performance. Our proposed algorithm essentially avoids this pitfall and consequently, its high adaptability in the face of erratic radio signal. Using 3 anchors in close proximity of each other, we are able to establish that RSS can be used as reliable indicator for localization with an acceptable degree of accuracy. Inherent in this concept, is the ability for each prospective anchor to validate (guarantee) the position or the proximity of the other 2 anchors involved in the localization and vice versa. This procedure ensures that the uncertainties of radio signals due to multipath effects in enclosed environments are minimized. A major driver of this idea is the implicit topological relationship among sensors due to raw radio signal strength. The algorithm is an area based algorithm; however, it does not trade accuracy for precision (i.e the size of the returned area).Keywords: anchor nodes, centroid algorithm, communication graph, radio signal strength
Procedia PDF Downloads 5101252 Intrusion Detection In MANET Using Game Theory
Authors: S. B. Kumbalavati, J. D. Mallapur, K. Y. Bendigeri
Abstract:
A mobile Ad-hoc network (MANET) is a multihop wireless network where nodes communicate each other without any pre-deployed infrastructure. There is no central administrating unit. Hence, MANET is generally prone to many of the attacks. These attacks may alter, release or deny data. These attacks are nothing but intrusions. Intrusion is a set of actions that attempts to compromise integrity, confidentiality and availability of resources. A major issue in the design and operation of ad-hoc network is sharing the common spectrum or common channel bandwidth among all the nodes. We are performing intrusion detection using game theory approach. Game theory is a mathematical tool for analysing problems of competition and negotiation among the players in any field like marketing, e-commerce and networking. In this paper mathematical model is developed using game theory approach and intruders are detected and removed. Bandwidth utilization is estimated and comparison is made between bandwidth utilization with intrusion detection technique and without intrusion detection technique. Percentage of intruders and efficiency of the network is analysed.Keywords: ad-hoc network, IDS, game theory, sensor networks
Procedia PDF Downloads 3881251 The Impact of Information and Communication Technology in Knowledge Fraternization
Authors: Muhammad Aliyu
Abstract:
Significant improvement in Information and Communication Technology (ICT) and the enforced global competition are revolutionizing the way knowledge is managed and the way organizations compete. The emergence of new organizations calls for a new way to fraternize knowledge, which is known as 'knowledge fraternization.' In this modern economy, it is the knowledge if properly managed that can harness the organization's competitive advantage. This competitive advantage is realized through the full utilization of information and data coupled with the harnessing of people’s skills and ideas as well as their commitment and motivations, which can be accomplished through socializing the knowledge management processes. A fraternize network for knowledge management is a web-based system designed using PHP that is Dreamweaver web development tool, with the help of CS4 Adobe Dreamweaver as the PHP code Editor that supports the use of Cascadian Style Sheet (CSS), MySQL with Xamp, Php My Admin (Version 3.4.7) localhost server via TCP/IP for containing the databases of the system to support this in a distributed way, spreading the workload over the whole organization. This paper reviews the technologies and the technology tools to be used in the development of social networks in an organization.Keywords: Information and Communication Technology (ICT), knowledge, fraternization, social network
Procedia PDF Downloads 3951250 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 3851249 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 5351248 Polarization as a Proxy of Misinformation Spreading
Authors: Michela Del Vicario, Walter Quattrociocchi, Antonio Scala, Ana Lucía Schmidt, Fabiana Zollo
Abstract:
Information, rumors, and debates may shape and impact public opinion heavily. In the latest years, several concerns have been expressed about social influence on the Internet and the outcome that online debates might have on real-world processes. Indeed, on online social networks users tend to select information that is coherent to their system of beliefs and to form groups of like-minded people –i.e., echo chambers– where they reinforce and polarize their opinions. In this way, the potential benefits coming from the exposure to different points of view may be reduced dramatically, and individuals' views may become more and more extreme. Such a context fosters misinformation spreading, which has always represented a socio-political and economic risk. The persistence of unsubstantiated rumors –e.g., the hypothetical and hazardous link between vaccines and autism– suggests that social media do have the power to misinform, manipulate, or control public opinion. As an example, current approaches such as debunking efforts or algorithmic-driven solutions based on the reputation of the source seem to prove ineffective against collective superstition. Indeed, experimental evidence shows that confirmatory information gets accepted even when containing deliberately false claims while dissenting information is mainly ignored, influences users’ emotions negatively and may even increase group polarization. Moreover, confirmation bias has been shown to play a pivotal role in information cascades, posing serious warnings about the efficacy of current debunking efforts. Nevertheless, mitigation strategies have to be adopted. To generalize the problem and to better understand social dynamics behind information spreading, in this work we rely on a tight quantitative analysis to investigate the behavior of more than 300M users w.r.t. news consumption on Facebook over a time span of six years (2010-2015). Through a massive analysis on 920 news outlets pages, we are able to characterize the anatomy of news consumption on a global and international scale. We show that users tend to focus on a limited set of pages (selective exposure) eliciting a sharp and polarized community structure among news outlets. Moreover, we find similar patterns around the Brexit –the British referendum to leave the European Union– debate, where we observe the spontaneous emergence of two well segregated and polarized groups of users around news outlets. Our findings provide interesting insights into the determinants of polarization and the evolution of core narratives on online debating. Our main aim is to understand and map the information space on online social media by identifying non-trivial proxies for the early detection of massive informational cascades. Furthermore, by combining users traces, we are finally able to draft the main concepts and beliefs of the core narrative of an echo chamber and its related perceptions.Keywords: information spreading, misinformation, narratives, online social networks, polarization
Procedia PDF Downloads 2921247 Travel Time Estimation of Public Transport Networks Based on Commercial Incidence Areas in Quito Historic Center
Authors: M. Fernanda Salgado, Alfonso Tierra, David S. Sandoval, Wilbert G. Aguilar
Abstract:
Public transportation buses usually vary the speed depending on the places with the number of passengers. They require having efficient travel planning, a plan that will help them choose the fast route. Initially, an estimation tool is necessary to determine the travel time of each route, clearly establishing the possibilities. In this work, we give a practical solution that makes use of a concept that defines as areas of commercial incidence. These areas are based on the hypothesis that in the commercial places there is a greater flow of people and therefore the buses remain more time in the stops. The areas have one or more segments of routes, which have an incidence factor that allows to estimate the times. In addition, initial results are presented that verify the hypotheses and that promise adequately the travel times. In a future work, we take this approach to make an efficient travel planning system.Keywords: commercial incidence, planning, public transport, speed travel, travel time
Procedia PDF Downloads 2541246 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5201245 Feasibility Study of Implementing Electronic Commerce in Food Industries with a Case Study
Authors: Maryam Safarirad
Abstract:
Fast and increasing growth of electronic commerce (e-commerce) in developed countries and its resulting competitive advantages mean that those countries should revise dramatically their trade and commercial strategies and policies. Regarding the importance of food industry in Iran, the current paper studies the feasibility of implementing the e-commerce system in Shiraz’s petrochemical unit. The statistical population of the study includes 29 senior managers and experts of the food industries. In the present Feasibility study of implementing electronic commerce 249 research, senior managers and experts’ opinions on feasibility have been examined and some feedbacks have resulted in from the opinions. The current research concludes that the organization under study does not have favorable state either in software or in hardware. Implementation of the e-commerce system in food industries would reduce the average value of the transaction costs.Keywords: electronic trading, electronic commerce, electronic exchange of information, feasibility study, information technology, virtual shopping, computer networks, electronic commerce laws, food industry
Procedia PDF Downloads 4161244 Revealing Insights into the Mechanisms of Biofilm Adhesion on Surfaces in Crude Oil Environments
Authors: Hadjer Didouh, Mohammed Hadj Meliani, Izzaddine Sameut Bouhaik
Abstract:
This study employs a multidisciplinary approach to investigate the intricate processes governing biofilm-surface interactions. Results indicate that surface properties significantly influence initial microbial attachment, with materials characterized by increased roughness and hydrophobicity promoting enhanced biofilm adhesion. Moreover, the chemical composition of materials plays a crucial role in impacting the development of biofilms. Environmental factors, such as temperature fluctuations and nutrient availability, were identified as key determinants affecting biofilm formation dynamics. Advanced imaging techniques revealed complex three-dimensional biofilm structures, emphasizing microbial communication and cooperation within these networks. These findings offer practical implications for industries operating in crude oil environments, guiding the selection and design of materials to mitigate biofilm-related challenges and enhance operational efficiency in such settings.Keywords: biofilm adhesion, surface properties, crude oil environments, microbial interactions, multidisciplinary investigation
Procedia PDF Downloads 741243 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition
Authors: Li Zhang, Yuehong Su
Abstract:
Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.Keywords: neural network, bended lightpipe, transmittance, Photopia
Procedia PDF Downloads 1531242 Islam-Oriented Movements' Recruiting Strategies in Morocco
Authors: Driss Bouyahya
Abstract:
During the late 1960s, Islam-oriented social movements have encroached to reach the Moroccan public spheres and mobilize huge waves of people from different walks of life under the banners of a rhetoric that resonates with the Muslim way of life away from Modernity and globalization tenets. In this respect, the present study investigates and explores some of the ways utilized by the Movement for Unity and Reform in Morocco as an Islam-oriented movement to recruit students massively at universities. The significance of this study lies in demystifying the recruitment strategies and mechanisms, considered essential for the Islam-oriented social movements to mobilize. This research paper uses a quantitative method to collect and analyze data through two different structured questionnaires. One of the major findings is that this Islam-oriented movement uses different techniques to recruit students, namely social networks, its websites and You-tube as three main modern and sophisticated means of communication. In a nutshell, this paper´s findings fill some of the gaps in the literature in regard to Islam-oriented movements ‘mobilization strategies.Keywords: changing, ideology, Islam, party
Procedia PDF Downloads 2211241 Passenger Flow Characteristics of Seoul Metropolitan Subway Network
Authors: Kang Won Lee, Jung Won Lee
Abstract:
Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB
Procedia PDF Downloads 2911240 An Investigation Into an Essential Property of Creativity, Which Is the First-Person Experience
Authors: Ukpaka Paschal
Abstract:
Margret Boden argues that a creative product is one that is new, surprising, and valuable as a result of the combination, exploration, or transformation involved in producing it. Boden uses examples of artificial intelligence systems that fit all of these criteria and argues that real creativity involves autonomy, intentionality, valuation, emotion, and consciousness. This paper provides an analysis of all these elements in order to try to understand whether they are sufficient to account for creativity, especially human creativity. This paper focuses on Generative Adversarial Networks (GANs), which is a class of artificial intelligence algorithms that are said to have disproved the common perception that creativity is something that only humans possess. This paper will then argue that Boden’s listed properties of creativity, which capture the creativity exhibited by GANs, are not sufficient to account for human creativity, and this paper will further identify “first-person phenomenological experience” as an essential property of human creativity. The rationale behind the proposed essential property is that if creativity involves comprehending our experience of the world around us into a form of self-expression, then our experience of the world really matters with regard to creativity.Keywords: artificial intelligence, creativity, GANs, first-person experience
Procedia PDF Downloads 1381239 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2671238 Developing a GIS-Based Tool for the Management of Fats, Oils, and Grease (FOG): A Case Study of Thames Water Wastewater Catchment
Authors: Thomas D. Collin, Rachel Cunningham, Bruce Jefferson, Raffaella Villa
Abstract:
Fats, oils and grease (FOG) are by-products of food preparation and cooking processes. FOG enters wastewater systems through a variety of sources such as households, food service establishments, and industrial food facilities. Over time, if no source control is in place, FOG builds up on pipe walls, leading to blockages, and potentially to sewer overflows which are a major risk to the Environment and Human Health. UK water utilities spend millions of pounds annually trying to control FOG. Despite UK legislation specifying that discharge of such material is against the law, it is often complicated for water companies to identify and prosecute offenders. Hence, it leads to uncertainties regarding the attitude to take in terms of FOG management. Research is needed to seize the full potential of implementing current practices. The aim of this research was to undertake a comprehensive study to document the extent of FOG problems in sewer lines and reinforce existing knowledge. Data were collected to develop a model estimating quantities of FOG available for recovery within Thames Water wastewater catchments. Geographical Information System (GIS) software was used in conjunction to integrate data with a geographical component. FOG was responsible for at least 1/3 of sewer blockages in Thames Water waste area. A waste-based approach was developed through an extensive review to estimate the potential for FOG collection and recovery. Three main sources were identified: residential, commercial and industrial. Commercial properties were identified as one of the major FOG producers. The total potential FOG generated was estimated for the 354 wastewater catchments. Additionally, raw and settled sewage were sampled and analysed for FOG (as hexane extractable material) monthly at 20 sewage treatment works (STW) for three years. A good correlation was found with the sampled FOG and population equivalent (PE). On average, a difference of 43.03% was found between the estimated FOG (waste-based approach) and sampled FOG (raw sewage sampling). It was suggested that the approach undertaken could overestimate the FOG available, the sampling could only capture a fraction of FOG arriving at STW, and/or the difference could account for FOG accumulating in sewer lines. Furthermore, it was estimated that on average FOG could contribute up to 12.99% of the primary sludge removed. The model was further used to investigate the relationship between estimated FOG and number of blockages. The higher the FOG potential, the higher the number of FOG-related blockages is. The GIS-based tool was used to identify critical areas (i.e. high FOG potential and high number of FOG blockages). As reported in the literature, FOG was one of the main causes of sewer blockages. By identifying critical areas (i.e. high FOG potential and high number of FOG blockages) the model further explored the potential for source-control in terms of ‘sewer relief’ and waste recovery. Hence, it helped targeting where benefits from implementation of management strategies could be the highest. However, FOG is still likely to persist throughout the networks, and further research is needed to assess downstream impacts (i.e. at STW).Keywords: fat, FOG, GIS, grease, oil, sewer blockages, sewer networks
Procedia PDF Downloads 2111237 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation
Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov
Abstract:
Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing
Procedia PDF Downloads 247