Search results for: algorithm techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9866

Search results for: algorithm techniques

8306 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 420
8305 Research on Transmission Parameters Determination Method Based on Dynamic Characteristic Analysis

Authors: Baoshan Huang, Fanbiao Bao, Bing Li, Lianghua Zeng, Yi Zheng

Abstract:

Parameter control strategy based on statistical characteristics can analyze the choice of the transmission ratio of an automobile transmission. According to the difference of the transmission gear, the number and spacing of the gear can be determined. Transmission ratio distribution of transmission needs to satisfy certain distribution law. According to the statistic characteristics of driving parameters, the shift control strategy of the vehicle is analyzed. CVT shift schedule adjustment algorithm based on statistical characteristic parameters can be seen from the above analysis, if according to the certain algorithm to adjust the size of, can adjust the target point are in the best efficiency curve and dynamic curve between the location, to alter the vehicle characteristics. Based on the dynamic characteristics and the practical application of the vehicle, this paper presents the setting scheme of the transmission ratio.

Keywords: vehicle dynamics, transmission ratio, transmission parameters, statistical characteristics

Procedia PDF Downloads 404
8304 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software

Authors: Marian Sagat, Mariana Remesikova

Abstract:

In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.

Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software

Procedia PDF Downloads 151
8303 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: cutting condition, surface roughness, decision tree, CART algorithm

Procedia PDF Downloads 375
8302 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 143
8301 Review Paper on an Algorithm Enhancing Privacy and Security in Online Meeting Platforms Using a Secured Encryption

Authors: Tonderai Muchenje, Mkhatshwa Phethile

Abstract:

Humans living in this current situation know that communication with one another is necessary for themselves. There are many ways to communicate with each other; during unexpected natural disasters and outbreak of epidemics and pandemics, the need for online meeting platforms are considered most important. Apparently, the development in the telecommunication sector also played an important role. Therefore, the epidemic of the Covid-19 Pandemic and the new normal situation resulted in the overwhelming production of online meeting platforms to prevent the situation. This software is commonly used in business communications in the beginning. Rapidly the COVID-19 pandemic changed the situation. At present-day, these virtual meeting applications are not only used to have informal meetings with friends and relatives but also to be used to have formal meetings in the business and education (universities) sector. In this article, an attempt has been made to list out the useful secured ways for using online meeting platforms.

Keywords: virtual background, zoom, secure online algorithm, RingCentral, Pexip Pexip, TeamViewer, microsoft teams

Procedia PDF Downloads 116
8300 Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, A. Elazim Negm

Abstract:

Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: green architecture/building, technologies, optimization, strategies, fuzzy techniques, models

Procedia PDF Downloads 475
8299 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 354
8298 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 15
8297 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 506
8296 FPGA Based IIR Filter Design Using MAC Algorithm

Authors: Rajesh Mehra, Bharti Thakur

Abstract:

In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: Butterworth filter, DSP, IIR, MAC, FPGA

Procedia PDF Downloads 388
8295 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique

Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram

Abstract:

Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.

Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm

Procedia PDF Downloads 170
8294 Identifying the Level of Awareness on Value Management Practice amongst Construction Practitioners in Nigeria

Authors: Alhassan Dahiru

Abstract:

Value management is widely accepted technique of eliminating unnecessary cost at different stages of project development that maximizes the functional value of a project by managing its evolution and development from concept to completion. Many construction industry practitioners are not aware of Value Management practice, and its use is less widespread in Nigeria. The aim of this research is to identify the level of awareness on value management practice amongst construction practitioners with a view to contribute to the improvement of the implementation of value management practice in the Nigerian construction industry. In this study, construction practitioners have been chosen as respondents from the 6 geopolitical zones of the federation including FCT Abuja. Through the survey, a total number of 360 semi-structured questionnaires were administered and 284 were returned and remained good for the analysis. The results indicate that most of the respondents were aware of the value management concept and issues surrounding construction industry in Nigeria, while about 32% of the respondents were not aware of its potential benefits. Therefore, organisations should review their techniques and processes from time to time for improvement on effective service delivery. Additionally, a change management strategy should also be part of every organization to ease the introduction of new techniques such as value management. There is also the need for more value management training workshops and seminars in order to enlighten the participants of the construction industry on the principles, concept, and techniques involved in the value management process.

Keywords: sustainability, value management, construction practitioners, Nigeria

Procedia PDF Downloads 231
8293 A Novel Search Pattern for Motion Estimation in High Efficiency Video Coding

Authors: Phong Nguyen, Phap Nguyen, Thang Nguyen

Abstract:

High Efficiency Video Coding (HEVC) or H.265 Standard fulfills the demand of high resolution video storage and transmission since it achieves high compression ratio. However, it requires a huge amount of calculation. Since Motion Estimation (ME) block composes about 80 % of calculation load of HEVC, there are a lot of researches to reduce the computation cost. In this paper, we propose a new algorithm to lower the number of Motion Estimation’s searching points. The number of computing points in search pattern is down from 77 for Diamond Pattern and 81 for Square Pattern to only 31. Meanwhile, the Peak Signal to Noise Ratio (PSNR) and bit rate are almost equal to those of conventional patterns. The motion estimation time of new algorithm reduces by at 68.23%, 65.83%compared to the recommended search pattern of diamond pattern, square pattern, respectively.

Keywords: motion estimation, wide diamond, search pattern, H.265, test zone search, HM software

Procedia PDF Downloads 612
8292 Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems

Authors: Hong Kai, Zhong Jun Jie, Chen Lin Qi, Wang Chen Guang

Abstract:

There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio.

Keywords: load-aware, scheduling algorithm, perceptual queue, heterogeneous multi-core

Procedia PDF Downloads 146
8291 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process

Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar

Abstract:

In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.

Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm

Procedia PDF Downloads 345
8290 Soil Parameters Identification around PMT Test by Inverse Analysis

Authors: I. Toumi, Y. Abed, A. Bouafia

Abstract:

This paper presents a methodology for identifying the cohesive soil parameters that takes into account different constitutive equations. The procedure, applied to identify the parameters of generalized Prager model associated to the Drucker & Prager failure criterion from a pressuremeter expansion curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the simulated curve using a simplex algorithm. The model response on pressuremeter path and its identification from experimental data lead to the determination of the friction angle, the cohesion and the Young modulus. Some parameters effects on the simulated curves and stresses path around pressuremeter probe are presented. Comparisons between the parameters determined with the proposed method and those obtained by other means are also presented.

Keywords: cohesive soils, cavity expansion, pressuremeter test, finite element method, optimization procedure, simplex algorithm

Procedia PDF Downloads 294
8289 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects

Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová

Abstract:

The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.

Keywords: algorithm, crisis, DYVELOP, infrastructure

Procedia PDF Downloads 409
8288 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
8287 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 513
8286 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 470
8285 Integrated Intensity and Spatial Enhancement Technique for Color Images

Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela

Abstract:

Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.

Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution

Procedia PDF Downloads 554
8284 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 606
8283 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing

Authors: Dawei Cai

Abstract:

This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.

Keywords: wearable device, MEMS sensor, ubiquitous computing, NFC

Procedia PDF Downloads 239
8282 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves

Authors: Mohammad Reza Ebrahimi

Abstract:

In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.

Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location

Procedia PDF Downloads 186
8281 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W

Authors: Manish Kumar Rajak, Sanjay Gupta

Abstract:

Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.

Keywords: mesh networks, MANET, packet count, threshold, throughput

Procedia PDF Downloads 475
8280 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 157
8279 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology

Authors: Alime Cengiz, Talip Kahyaoglu

Abstract:

Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.

Keywords: genetic expression programming, response surface methodology, roasting, sesame seed

Procedia PDF Downloads 418
8278 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem

Authors: Takahiro Hino, Michiharu Maeda

Abstract:

Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.

Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem

Procedia PDF Downloads 553
8277 Teachers’ Attitudes and Techniques in EFL Writing in Secondary Schools in Egypt

Authors: Hosam Mohamed Darwish

Abstract:

In 2008, the Egyptian Ministry of Education introduced a new national coursebook ‘Hello for Secondary Schools, which recommends a shift in EFL teachers’ instructional practices. Since then, very little attention has been paid to teachers’ techniques in EFL writing classes. Hence, this study aimed at investigating teaching writing practices in secondary schools and exploring the teachers’ attitudes towards EFL writing skill in addition to exploring the difficulties that teachers encountered in EFL writing lessons. The study depended on data triangulation through administering two questionnaires: one to 44 teachers and the other to 24 students, and conducting semi-structured interviews with 11 teachers. Both teachers and students were asked to describe teaching practices in EFL writing classes while the open-ended questions and interviews collected data about the teachers’ difficulties in writing lessons. The questionnaires indicate that teachers have negative attitudes towards teaching writing, and most of their practices are still traditional. Five factors have influenced teachers’ practices: backwash of the test, teachers’ professional development, students’ culture of reading and large classes. The study recommends there has to be a necessary change in the students’ examination system, and ongoing teachers’ professional development should be considered. Finally, a teaching model and implications are suggested.

Keywords: EFL writing, Egyptian secondary schools, teachers’ attitudes, teachers’ techniques

Procedia PDF Downloads 421