Search results for: Umesh Kumar Sharma
595 Comparing Pathogen Inhibition Effect of Different Preparations of Probiotic L. reuteri Strains
Authors: Tejinder Pal Singh, Ravinder Kumar Malik, Gurpreet Kaur
Abstract:
Adhesion is key factor for colonization of the gastrointestinal tract and the ability of probiotic strains to inhibit pathogens. Therefore, the adhesion ability is considered as a suitable biomarker for the selection of potential probiotic. In the present study, eight probiotic Lactobacillus reuteri strains were evaluated as viable, LiCl treated or heat-killed forms and compared with probiotic reference strains (L. reuteri ATCC55730). All strains investigated were able to adhere to Caco-2 cells. All probiotic L. reuteri strains tested were able to inhibit and displace (P < 0.05) the adhesion of Escherichia coli ATCC25922, Salmonella typhi NCDC113, Listeria monocytogenes ATCC53135 and Enterococcus faecalis NCDC115. The probiotic strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cell line model and are highly antagonistic to selected pathogens in which surface molecules, proteinaceous molecules in particular, plays an important role.Keywords: probiotics, Lactobacillus reuteri, adhesion, Caco-2 cells
Procedia PDF Downloads 250594 Making Social Accountability Initiatives Work in the Performance of Local Self-Governing Institutions: District-Level Analysis in Rural Assam, India
Authors: Pankaj Kumar Kalita
Abstract:
Ineffectiveness of formal institutional mechanisms such as official audit to improve public service delivery has been a serious concern to scholars working on governance reforms in developing countries. Scholars argue that public service delivery in local self-governing institutions can be improved through application of informal mechanisms such as social accountability. Social accountability has been reinforced with the engagement of citizens and civic organizations in the process of service delivery to reduce the governance gap in developing countries. However, there are challenges that may impede the scope of establishing social accountability initiatives in the performance of local self-governing institutions. This study makes an attempt to investigate the factors that may impede the scope of establishing social accountability, particularly in culturally heterogeneous societies like India. While analyzing the implementation of two rural development schemes by Panchayats, the local self-governing institutions functioning in rural Assam in India, this study argues that the scope of establishing social accountability in the performance of local self-governing institutions, particularly in culturally heterogeneous societies in developing countries will be impeded by the absence of inter-caste and inter-religion networks. Data has been collected from five selected districts of Assam using in-depth interview method and survey method. The study further contributes to the debates on 'good governance' and citizen-centric approaches in developing countries.Keywords: citizen engagement, local self-governing institutions, networks, social accountability
Procedia PDF Downloads 318593 Unravelling Green Entrepreneurial: Insights From a Hybrid Systematic Review
Authors: Shivani, Seema Sharma, Shveta Singh, Akriti Chandra
Abstract:
Business activities contribute to various environmental issues such as deforestation, waste generation, and pollution. Therefore, integration of environmental concerns within manufacturing operations is vital for the long-term survival of businesses. In this context, green entrepreneurial orientation (GEO) is recognized as a firm-level internal strategy to mitigate ecological damage through initiating green business practices. However, despite the surge in research on GEO in recent years, ambiguity remains on the genesis of GEO and the mechanism through which GEO impacts various organizational outcomes. This prompts an examination of the ongoing scholarly discourse about GEO and its domain knowledge structure within the entrepreneurship literature using bibliometric analysis and the Theories, Contexts, Characteristics, and Methodologies (TCCM) framework. The authors analyzed a dataset comprising 73 scientific documents sourced from the Scopus and Web of Science database from 2005 to 2024 to provide insights into the publication trends, prominent journals, authors, articles, countries' collaboration, and keyword analysis in GEO research. The findings indicate that the number of relevant papers and citations has increased consistently, with authors from China being the main contributors. The articles are mainly published in Business Strategy and the Environment and Sustainability. Dynamic capability view is the dominant framework applied in the GEO domain, with large manufacturing firms and SMEs constituting the majority of the sample. Further, various antecedents of GEO have been identified at an organizational level to which managers can focus their attention. The studies have used various contextual factors to explain when GEO translates into superior organizational outcomes. The Method analysis reveals that PLS-SEM is the commonly used approach for analyzing the primary data collected through surveys. Moreover, the content analysis indicates four emerging research frontiers identified as unidimensional vs. multidimensional perspectives of GEO, typologies of green innovation, environmental management in the hospitality industry, and tech-savvy sustainability in the agriculture sector. This study is one of the earliest to apply quantitative methods to synthesize the extant literature on GEO. This research holds relevance for management practice due to the escalating levels of carbon emissions, energy consumption, and waste discharges observed in recent years, resulting in increased apprehension about climate change.Keywords: green entrepreneurship, sustainability, SLR, TCCM
Procedia PDF Downloads 1592 Modeling of Virtual Power Plant
Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.
Abstract:
Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling
Procedia PDF Downloads 61591 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water
Authors: Krishna Kumar Singh, Praveen Jain
Abstract:
The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.Keywords: groundwater, medium sand-mixed storm water filter, inflow sediment load
Procedia PDF Downloads 389590 Coastal Vulnerability under Significant Sea Level Rise: Risk and Adaptation Measures for Mumbai
Authors: Malay Kumar Pramanik
Abstract:
Climate change induced sea level rise increases storm surge, erosion, and inundation, which are stirred by an intricate interplay of physical environmental components at the coastal region. The Mumbai coast is much vulnerable to accelerated regional sea level change due to its highly dense population, highly developed economy, and low topography. To determine the significant causes behind coastal vulnerability, this study analyzes four different iterations of CVI by incorporating the pixel-based differentially weighted rank values of the selected five geological (CVI5), three physical (CVI8 with including geological variables), and four socio-economic variables (CVI4). However, CVI5 and CVI8 results yielded broadly similar natures, but after including socio-economic variables (CVI4), the results CVI (CVI12) has been changed at Mumbai and Kurla coastal portion that indicates the study coastal areas are mostly sensible with socio-economic variables. Therefore, the results of CVI12 show that out of 274.1 km of coastline analyzed, 55.83 % of the coast is very low vulnerable, 60.91 % of the coast is moderately vulnerable while 50.75 % is very high vulnerable. Finding also admits that in the context of growing urban population and the increasing rate of economic activities, socio-economic variables are most important variable to use for validating and testing the CVI. Finally, some recommendations are presented for concerned decision makers and stakeholders to develop appropriate coastal management plans, nourishment projects and mitigation measures considering socio-economic variables.Keywords: coastal vulnerability index, sea level change, Mumbai coast, geospatial approach, coastal management, climate change
Procedia PDF Downloads 132589 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective
Authors: R. Pravin Kumar, L. Roopa
Abstract:
Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase
Procedia PDF Downloads 135588 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading
Authors: Neeraj Kumar, J. P. Narayan
Abstract:
The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings
Procedia PDF Downloads 214587 Mitigation of Indoor Human Exposure to Traffic-Related Fine Particulate Matter (PM₂.₅)
Authors: Ruchi Sharma, Rajasekhar Balasubramanian
Abstract:
Motor vehicles emit a number of air pollutants, among which fine particulate matter (PM₂.₅) is of major concern in cities with high population density due to its negative impacts on air quality and human health. Typically, people spend more than 80% of their time indoors. Consequently, human exposure to traffic-related PM₂.₅ in indoor environments has received considerable attention. Most of the public residential buildings in tropical countries are designed for natural ventilation where indoor air quality tends to be strongly affected by the migration of air pollutants of outdoor origin. However, most of the previously reported traffic-related PM₂.₅ exposure assessment studies relied on ambient PM₂.₅ concentrations and thus, the health impact of traffic-related PM₂.₅ on occupants in naturally ventilated buildings remains largely unknown. Therefore, a systematic field study was conducted to assess indoor human exposure to traffic-related PM₂.₅ with and without mitigation measures in a typical naturally ventilated residential apartment situated near a road carrying a large volume of traffic. Three PM₂.₅ exposure scenarios were simulated in this study, i.e., Case 1: keeping all windows open with a ceiling fan on as per the usual practice, Case 2: keeping all windows fully closed as a mitigation measure, and Case 3: keeping all windows fully closed with the operation of a portable indoor air cleaner as an additional mitigation measure. The indoor to outdoor (I/O) ratios for PM₂.₅ mass concentrations were assessed and the effectiveness of using the indoor air cleaner was quantified. Additionally, potential human health risk based on the bioavailable fraction of toxic trace elements was also estimated for the three cases in order to identify a suitable mitigation measure for reducing PM₂.₅ exposure indoors. Traffic-related PM₂.₅ levels indoors exceeded the air quality guidelines (12 µg/m³) in Case 1, i.e., under natural ventilation conditions due to advective flow of outdoor air into the indoor environment. However, while using the indoor air cleaner, a significant reduction (p < 0.05) in the PM₂.₅ exposure levels was noticed indoors. Specifically, the effectiveness of the air cleaner in terms of reducing indoor PM₂.₅ exposure was estimated to be about 74%. Moreover, potential human health risk assessment also indicated a substantial reduction in potential health risk while using the air cleaner. This is the first study of its kind that evaluated the indoor human exposure to traffic-related PM₂.₅ and identified a suitable exposure mitigation measure that can be implemented in densely populated cities to realize health benefits.Keywords: fine particulate matter, indoor air cleaner, potential human health risk, vehicular emissions
Procedia PDF Downloads 125586 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor
Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra
Abstract:
The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor
Procedia PDF Downloads 334585 Preventing Neurodegenerative Diseases by Stabilization of Superoxide Dismutase by Natural Polyphenolic Compounds
Authors: Danish Idrees, Vijay Kumar, Samudrala Gourinath
Abstract:
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1). The use of small molecules has been shown to stabilize the SOD1 dimer and preventing its dissociation and aggregation. In this study, we employed molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) to study the interactions between SOD1 and natural polyphenolic compounds. In order to explore the noncovalent interaction between SOD1 and natural polyphenolic compounds, molecular docking and molecular dynamic (MD) simulations were employed to gain insights into the binding modes and free energies of SOD1-polyphenolic compounds. MM/PBSA methods were used to calculate free energies from obtained MD trajectories. The compounds, Hesperidin, Ergosterol, and Rutin showed the excellent binding affinity in micromolar range with SOD1. Ergosterol and Hesperidin have the strongest binding affinity to SOD1 and was subjected to further characterization. Biophysical experiments using Circular Dichroism and Thioflavin T fluorescence spectroscopy results show that the binding of these two compounds can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results also suggest that these compounds reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This study will be helpful to develop other drug-like molecules which may have the effect to reduce the aggregation of SOD1.Keywords: amyotrophic lateral sclerosis, molecular dynamics simulation, surface plasmon resonance, superoxide dismutase
Procedia PDF Downloads 135584 Effect of Active Compounds Extracted From Tagetes Erecta Against Plant-Parasitic Nematodes
Authors: Deepika, Kashika Kapoor, Nistha Khanna, Lakshmi, Archna Kumar
Abstract:
Plant-parasitic nematodes cause major loss in global food production and destroying at least 21.3% of food annually. About 4100 species of plant-parasitic nematodes are reported, out of this, Meloidogyne species is prominent and worldwide in distribution. Observing the harmful effects of chemical based nematicides, there is a great need for an eco-friendly, highly efficient, sustainable control measure for Meloidogyne. Therefore, In vitro study was carried out to observe the impact of volatile cues obtained from the Tagetes erecta leaves on plant parasitic nematodes. Volatile cues were collected from marigold leaves. For chemical characterization, GCMS (Gas Chromatography Mass Spectrometry) profiling was conducted. VOCs (Volatile Organic Compounds) profile of marigold indicated the presence of several types of alkanes, alkenes varying in number and quantity. Status of nematodes population by counting the live and dead individuals after applying a definite volume (100µl) of extract was recorded at different concentrations (100%, 50%, 25%) with contrast of control (hexane) during different time durations i.e.,24hr, 48hr and 72hr. Result indicated that mortality increases with increasing time (72hr) and concentration (100%) i.e., 50%. Thus, application of prominent compound present in Marigold in pure form may be tested individually or in combination to find out the most efficient active compound/s, which may be highly useful in eco-friendly management of targeted plant parasitic nematode.Keywords: plant-parasitic nematode, meloidogyne, tagetes erecta, volatile organic compounds
Procedia PDF Downloads 167583 Eco-Environmental Vulnerability Evaluation in Mountain Regions Using Remote Sensing and Geographical Information System: A Case Study of Pasol Gad Watershed of Garhwal Himalaya, India
Authors: Suresh Kumar Bandooni, Mirana Laishram
Abstract:
The Mid Himalaya of Garhwal Himalaya in Uttarakhand (India) has a complex Physiographic features withdiversified climatic conditions and therefore it is suspect to environmental vulnerability. Thenatural disasters and also anthropogenic activities accelerate the rate of environmental vulnerability. To analyse the environmental vulnerability, we have used geoinformatics technologies and numerical models and it is adoptedby using Spatial Principal Component Analysis (SPCA). The model consist of many factors such as slope, landuse/landcover, soil, forest fire risk, landslide susceptibility zone, human population density and vegetation index. From this model, the environmental vulnerability integrated index (EVSI) is calculated for Pasol Gad Watershed of Garhwal Himalaya for the years 1987, 2000, and 2013 and the Vulnerability is classified into five levelsi.e. Very low, low, medium, high and very highby means of cluster principle. The resultsforeco-environmental vulnerability distribution in study area shows that medium, high and very high levels are dominating in the area and it is mainly caused by the anthropogenic activities and natural disasters. Therefore, proper management forconservation of resources is utmost necessity of present century. It is strongly believed that participation at community level along with social worker, institutions and Non-governmental organization (NGOs) have become a must to conserve and protect the environment.Keywords: eco-environment vulnerability, spatial principal component analysis, remote sensing, geographic information system, institutions, Himalaya
Procedia PDF Downloads 261582 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior
Authors: Priyanka Gupta, Bipin Kumar
Abstract:
Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle
Procedia PDF Downloads 88581 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 307580 Bio-Surfactant Production and Its Application in Microbial EOR
Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi
Abstract:
There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.Keywords: bio-surfactant, bacteria, interfacial tension, sand column
Procedia PDF Downloads 401579 Induced Emotional Empathy and Contextual Factors like Presence of Others Reduce the Negative Stereotypes Towards Persons with Disabilities through Stronger Prosociality
Authors: Shailendra Kumar Mishra
Abstract:
In this paper, we focus on how contextual factors like the physical presence of other perceivers and then developed induced emotional empathy towards a person with disabilities may reduce the automatic negative stereotypes and then response towards that person. We demonstrated in study 1 that negative attitude based on negative stereotypes assessed on ATDP-test questionnaires on five points Linkert-scale are significantly less negative when participants were tested with a group of perceivers and then tested alone separately by applying 3 (positive, indifferent, and negative attitude levels) X 2 (physical presence condition and alone) factorial design of ANOVA test. In the second study, we demonstrate, by applying regression analysis, in the presence of other perceivers, whether in a small group, participants showed more induced emotional empathy through stronger prosociality towards a high distress target like a person with disabilities in comparison of that of other stigmatized persons such as racial biased or gender-biased people. Thus results show that automatic affective response in the form of induced emotional empathy in perceiver and contextual factors like the presence of other perceivers automatically activate stronger prosocial norms and egalitarian goals towards physically challenged persons in comparison to other stigmatized persons like racial or gender-biased people. This leads to less negative attitudes and behaviour towards a person with disabilities.Keywords: contextual factors, high distress target, induced emotional empathy, stronger prosociality
Procedia PDF Downloads 138578 Nanoceutical Intervention (Nanodrug) of Neonatal Hyperbilirubinemias Compared to Conventional Phototherapy
Authors: Samir Kumar Pal
Abstract:
Background: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. Uncontrolled hyperbilirubinemia is a potential problem in developing countries, including India, because of the lack of reliable healthcare institutes for conventional phototherapy. In India, most of the rural subjects duel in the exchange limit during transport, leading to a risk of kernicterus when they arrive at the treatment centre. Thus, an alternative pharmaceutical agent is needed for the hours. Objective: Exploration of a distinct therapeutic strategy for the control of neonatal hyperbilirubinemia compared to conventional phototherapy in a clinical setting. Method: We synthesized, characterized and investigated a spinel-structured Manganese citrate nanocomplex (C-Mn₃O₄ NC, the nanodrug) along with conventional phototherapy in neonatal subjects. We have also observed BIND scores in order to assess neurological dysfunctions. Results: Our observational study clearly reveals that the rate of declination of bilirubin in neonatal subjects with nanodrug oral administration and phototherapy is faster compared to that in the case of phototherapy only. The associated neural dysfunctions were also found to be significantly lower in the case of combined therapy. Conclusion: This study demonstrates that combined therapy works better than conventional phototherapy only for the control of hyperbilirubinemia. We have observed that a significant portion of neonatal subjects requiring blood exchange has been prevented with the combined therapeutic strategy. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemo preventive approach to clinical settings.Keywords: nanodrug, nanoparticle, Neonatal hyperbilirubinemia, alternative to phototherapy, redox modulation, redox medicine
Procedia PDF Downloads 56577 The Effect of Geographical Differentials of Epidemiological Transition on Health-Seeking Behavior in India
Authors: Sumit Kumar Das, Laishram Ladusingh
Abstract:
Aim: The aim of the study is to examine the differential of epidemiological transition across fifteen agro-climatic zones of India and its effect on health-seeking behavior. Data and Methods: Unit level data on consumption expenditure on health of India from three decadal rounds conducted by National Sample Survey Organization are used for the analysis. These three rounds are 52nd (1995-96), 60th (2004-05) and 71st (2014-15). The age-adjusted prevalence rate for communicable diseases and non-communicable diseases are estimated for fifteen agro-climatic zones of India for three time periods. Bivariate analysis is used to find out determinants of health-seeking behavior. Multilevel logistic regression is used to examine factors effecting on household health-seeking behavior. Result: The prevalence of communicable diseases is increasing in most of the zones of India. Every South Indian zones, Gujarat plains, and lower Gangetic plain are facing the severe attack of dual burden of diseases. Demand for medical advice has increased in southern zones, and east zones, reliance on private healthcare facilities are increasing in most of the zone. Demographic characteristics of the household head have a significant impact on health-seeking behavior. Conclusion: Proper program implementation is required considering the disease prevalence and differential in the pattern of health seeking behavior. Along with initiation and strengthening of programs for non-communicable, existing programs for communicable diseases need to monitor and supervised strictly.Keywords: agro-climatic zone, epidemiological transition, health-seeking behavior, multilevel regression
Procedia PDF Downloads 181576 Coal Preparation Plant:Technology Overview and New Adaptations
Authors: Amit Kumar Sinha
Abstract:
A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.Keywords: intermediate circuit, overlapping process, reflux classifier
Procedia PDF Downloads 135575 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach
Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire
Procedia PDF Downloads 282574 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites Through T6 and T8 Heat Treatments
Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.
Abstract:
In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of their benefits such as moderate strength; better deforming characteristics, excellent chemical decay resistance, and affordable cost. 7075 Al-alloys have been used in the transportation industry for the fabrication of several types of automobile parts, such as wheel covers, panels and structures. It is expected that substitution of such aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminium alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties achievable by selecting and tailoring the suitable heat treatment process. On subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments, known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. Decreasing peak hardness value with increasing aging temperature is the well-known behavior of age hardenable alloys. The peak hardness value is further increasing when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. Considering these aspects, it is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and upto 5 times increase in wear resistance are also observed in the present study.Keywords: reinforcement, precipitation, thermomechanical, dislocation, strain hardening
Procedia PDF Downloads 309573 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications
Authors: Ashima Sharma, Tapan K. Chaudhuri
Abstract:
Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing
Procedia PDF Downloads 345572 Need for E-Learning: An Effective Method in Educating the Persons with Hearing Impairment Using Sign Language
Authors: S. Vijayakumar, S. B. Rathna Kumar, Navnath D Jagadale
Abstract:
Learning and teaching are the challenges ahead in the education of the students with hearing impairment using sign language (SHISL). Either the students or teachers face difficulties in the process of learning/teaching. Communication is one of the main barriers while teaching SHISL. Further, the courses of study or the subjects are limited to SHISL at least in countries like India. Students with hearing impairment mainly opt for sign language as a communication mode. Subjects like physics, chemistry, advanced mathematics etc. are not available in the curriculum for the SHISL since their content and ideas are complex. In India, exemption for language papers is being given for the students with hearing impairment. It may give opportunity to them to secure secondary/ higher secondary qualifications. It is a known fact that students with hearing impairment are facing difficulty in their future carrier. They secure neither a higher study nor a good employment opportunity. Vocational training in various trades will land them in few jobs with few bucks in pocket. However, not all of them are blessed with higher positions in government or private sectors in competitive fields or where the technical knowledge is required. E learning with sign language instructions can be used for teaching languages and science subjects. Computer Based Instruction (CBI), Computer Based Training (CBT), and Computer Assisted Instruction (CAI) are now part-and-parcel of Modern Education. It will also include signed video clip corresponding to the topic. Learning language subjects will improve the understanding of concepts in different subjects. Learning other science subjects like their hearing counterparts will enable the SHISL to go higher in studies and increase their height to pluck a fruit of the tree of employment.Keywords: students with hearing impairment using sign language, hearing impairment, language subjects, science subjects, e-learning
Procedia PDF Downloads 404571 Influencing Factors to Mandatory versus Non-Mandatory E-Government Services Adoption in India: An Empirical Study
Authors: Rajiv Kumar, Amit Sachan, Arindam Mukherjee
Abstract:
Government agencies around the world, including India, are incorporating digital technologies and processes into their day-to-day operations to become more efficient. Despite low internet penetration (around 34.8% of total population) in India, Government of India has made some public services mandatory to access online (e.g. passport, tax filing).This is insisting citizens to access mandatory public services online. However, due to digital divide, all citizens do not have equal access to internet. In light of this, it is an interesting topic to explore how citizens are able to access mandatory online public services. It is important to understand how citizens are adopting these mandatory e-government services and how the adoption behavior of these mandatory e-government services is different or similar to adoption behavior of non-mandatory e-government services. The purpose of this research is to investigate the factors that influence adoption of mandatory and non-mandatory e-government services in India. A quantitative technique is employed in this study. A conceptual model has been proposed by integrating the influencing factors to adopt e-government services from previous studies. The proposed conceptual model highlights a comprehensive set of potential factors influencing the adoption of e-government services. The proposed model has been validated by keeping in view the local context of Indian society. Online and paper based survey was administered, collected data was analyzed and results have been discussed. A total of 463 valid responses were received and further the responses were analyzed. The research reveals that the influencing factors to adopt e-government services are not same for both mandatory and non-mandatory e-government services. There are some factors that influence adoption of both mandatory and non-mandatory e-government services but there are some which are relevant for either of mandatory and non-mandatory e-government services. The research findings may help government or concerned agencies in successfully implementing e-government services.Keywords: adoption, e-government, India, mandatory, non-mandatory
Procedia PDF Downloads 317570 Cost Benefit Analysis of Adoption of Climate Change Adaptation Options among Rural Rice Farmers in Nepal
Authors: Niranjan Devkota , Ram Kumar Phuya, Durga Lal Shreshta
Abstract:
This paper estimates cost and benefit of adoption of climate change adaptation options available to the rural rice farmers of Nepal. Adoption of adaptation strategies, intensity of use of adaptation options, identification of labor and non-labor cost and finally per unit cost and benefit analysis of climate change adaptation were made. Multi-stage sampling technique was used to source respondents for the study and used structured questionnaire techniques to collect data from 773 households from seven districts; 3 from Terai and 4 from Hilly region of Nepal. The result revealed that there are 13 major adaptation options rice farmers practice in order to protect themselves from climatic risk. Among the given adaptation options, the first three popular adaptation options practiced by rice farmers are (i) increasing use of chemical fertilizer (60.93%) (ii) use of climate smart verities (49.29%) and (iii) change in nursery date (32.08%). Adaptation cost is obvious, based on that, the first three costly adaptation options are the alternative irrigation practice which incurred average cost of US $69.95 (US$ 1 = 102.84 Nepalese Rupees) followed by a denser plantation of local seeds ($ 20.69) and using climate smart varieties ($ 18.06). 88% farmers practiced more than one adaptation strategies on the same farm with the aim of reducing the effect of extreme climatic conditions. Total cost and revenue revealed that per unit total cost ranges from $28.34 to $32.79 whereas per unit total revenue ranges $33.4 to $49.02. Surprisingly, it is observed that farmers who do not adopt any adaptation options are able to receive highest income from per unit production. As Net Present Value (NPV) is positive and Benefit Cost Ration (BCR) is greater than one for every adaptation options that indicates the available adaptation options are profitable to the rice farmers.Keywords: climate change, adaptation options, cost benefit analysis, rural rice farmers, Nepal
Procedia PDF Downloads 261569 A Study of Gender Awareness among College Students in Delhi
Authors: Shailly Kumar
Abstract:
Gender is a social construction resulting in defining roles and responsibilities to carried out according to masculine and feminine traits. The main aim of the study was to explore gender awareness among college going students of Delhi. The objectives of studies were to find out (i) the understanding of term gender and roles and responsibilities associated with male and female as masculine and feminine traits in our society. (ii)Gender images representing the attributes and characteristics attached to particular gender. (iii) Gender discrimination prevailing among girls and boys in our society. (iv)Gender stereotypes resulting in gendering with respect to religion, culture, family and media. The sample of study consisted of 100 undergraduate college girl students. The findings of study stated that the students had this understanding that sex is a natural phenomenon and gender is socially constructed. Gender defines the roles and responsibilities among two sexes. On a gender image students concluded that males are represented as a powerful members of society showing physical strength and violence, force and society gave the power to men oppress and subjugate women in society that's why women are treated inferior and given secondary position in society. On gender discrimination, girl students stated that they faced discrimination at all level such as family, media ,education, workplace etc .There is strong prevailing gender stereotypes among girls and boys with respect to religious practices, choice of career ,preference of child etc. This study concluded that students were aware of gendered practices in various domains of life. The study helped to interpret the notions and perceptions of students towards gendering of social spaces and in their lives.Keywords: gender, gender awareness, gender role, masculinity and feminity
Procedia PDF Downloads 428568 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum
Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul
Abstract:
The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum
Procedia PDF Downloads 226567 Continuity of Place-Identity: Identifying Regional Components of Kerala Architecture through 1805-1950
Authors: Manoj K. Kumar, Deepthi Bathala
Abstract:
Man has the need to know and feel as a part of the historical continuum and it is this continuum that reinforces his identity. Architecture and the built environment contribute to this identity as established by the various identity theories exploring the relationship between the two. Architecture which is organic has been successful in maintaining a continuum of identity until the advent of globalization when the world saw a drastic shift to architecture of ‘placelessness’. The answer to the perfect synthesis of ‘universalization’ and ‘regionalism’ is an ongoing quest. However, history has established a smooth transition from vernacular to colonial to modern unlike the architecture of today. The traditional Kerala architecture has evolved from the tropical climate, geography, local needs, materials, skills and foreign influences. It is unique in contrast to the architecture of the neighboring states as a result of the geographical barriers however influenced by the architecture of the Orient due to trade relations. Through 1805 to 1950, the European influence on the architecture of Kerala resulted in the emergence of the colonial style which managed to establish a continuum of the traditional architecture. The paper focuses on the identification of the components of architecture that established the continuity of place-identity in the architecture of Kerala and examines the transition from the traditional Kerala architecture to colonial architecture during the colonial period. Visual surveys based on the principles of urban design, cognitive mapping, typology analysis followed by the strong understanding of the morphological and built environment along with the matrix method are the research tools used. The understanding of these components of continuity can be useful in creating buildings which people can relate to in the present day. South-Asia shares the history of colonialism and the understanding of these components can pave the way for further research on how to establish a regional identity in the era of globalization.Keywords: colonial, identity, place, regional
Procedia PDF Downloads 407566 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis
Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas
Abstract:
Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux
Procedia PDF Downloads 134