Search results for: speckle noise reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5895

Search results for: speckle noise reduction

4365 The Impact of Speech Style on the Production of Spanish Vowels by Spanish-English Bilinguals and Spanish Monolinguals

Authors: Vivian Franco

Abstract:

There has been a great deal of research about vowel production of second language learners of Spanish, vowel variation across Spanish dialects, and more recently, research related to Spanish heritage speakers’ vowel production based on speech style. However, there is little investigation reported on Spanish heritage speakers’ vowel production in regard to task modality by incorporating own comparison groups of monolinguals and late bilinguals. Thus, the present study investigates the influence of speech style on Spanish heritage speakers’ vowel production by comparing Spanish-English early and late bilinguals and Spanish monolinguals. The study was guided by the following research question: How do early bilinguals (heritage speakers) differ/relate to advanced L2 speakers of Spanish (late bilinguals) and Spanish monolinguals in their vowel quality (acoustic distribution) and quantity (duration) based on speech style? The participants were a total of 11 speakers of Spanish: 7 early Spanish-English bilinguals with a similar linguistic background (simultaneous bilinguals of the second generation); 2 advanced L2 speakers of Spanish; and 2 Spanish monolinguals from Mexico. The study consisted of two tasks. The first one adopted a semi-spontaneous style by a solicited narration of life experiences and a description of a favorite movie with the purpose to collect spontaneous speech. The second task was a reading activity in which the participants read two paragraphs of a Mexican literary essay 'La nuez.' This task aimed to obtain a more controlled speech style. From this study, it can be concluded that early bilinguals and monolinguals show a smaller formant vowel space overall compared to the late bilinguals in both speech styles. In terms of formant values by stress, the early bilinguals and the late bilinguals resembled in the semi-spontaneous speech style as their unstressed vowel space overlapped with that of the unstressed vowels different from the monolinguals who displayed a slightly reduced unstressed vowel space. For the controlled data, the early bilinguals were similar to the monolinguals as their stressed and unstressed vowel spaces overlapped in comparison to the late bilinguals who showed a more clear reduction of unstressed vowel space. In regard to stress, the monolinguals revealed longer vowel duration overall. However, findings of duration by stress showed that the early bilinguals and the monolinguals remained stable with shorter values of unstressed vowels in the semi-spontaneous data and longer duration in the controlled data when compared to the late bilinguals who displayed opposite results. These findings suggest an implication for Spanish heritage speakers and L2 Spanish vowels research as it has been frequently argued that Spanish bilinguals differ from the Spanish monolinguals by their vowel reduction and centralized vowel space influenced by English. However, some Spanish varieties are characterized by vowel reduction especially in certain phonetic contexts so that some vowels present more weakening than others. Consequently, it would not be conclusive to affirm an English influence on the Spanish of these bilinguals.

Keywords: Spanish-English bilinguals, Spanish monolinguals, spontaneous and controlled speech, vowel production.

Procedia PDF Downloads 128
4364 Software Verification of Systematic Resampling for Optimization of Particle Filters

Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey

Abstract:

Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.

Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking

Procedia PDF Downloads 82
4363 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects

Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa

Abstract:

This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.

Keywords: box-counting, digital image processing, fractal dimension, numerical method

Procedia PDF Downloads 81
4362 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results

Procedia PDF Downloads 508
4361 Evaluating the Terrace Benefits of Erosion in a Terraced-Agricultural Watershed for Sustainable Soil and Water Conservation

Authors: Sitarrine Thongpussawal, Hui Shao, Clark Gantzer

Abstract:

Terracing is a conservation practice to reduce erosion and widely used for soil and water conservation throughout the world but is relatively expensive. A modification of the Soil and Water Assessment Tool (called SWAT-Terrace or SWAT-T) explicitly aims to improve the simulation of the hydrological process of erosion from the terraces. SWAT-T simulates erosion from the terraces by separating terraces into three segments instead of evaluating the entire terrace. The objective of this work is to evaluate the terrace benefits on erosion from the Goodwater Creek Experimental Watershed (GCEW) at watershed and Hydrologic Response Unit (HRU) scales using SWAT-T. The HRU is the smallest spatial unit of the model, which lumps all similar land uses, soils, and slopes within a sub-basin. The SWAT-T model was parameterized for slope length, steepness and the empirical Universal Soil Erosion Equation support practice factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models for calibration and validation. Results of SWAT-T calibration showed good performance between measured and simulated erosion for the monthly time step, but poor performance for SWAT-T validation. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. To estimate terrace benefits on erosion, models were compared with and without terraces. Results showed that SWAT-T showed significant ~3% reduction in erosion (Pr <0.01) at the watershed scale and ~12% reduction in erosion at the HRU scale. Studies using the SWAT-T model indicated that the terraces have advantages to reduce erosion from terraced-agricultural watersheds. SWAT-T can be used in the evaluation of erosion to sustainably conserve the soil and water.

Keywords: Erosion, Modeling, Terraces, SWAT

Procedia PDF Downloads 205
4360 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 219
4359 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
4358 Field Efficacy Evaluation and Synergistic Effect of Two Rodenticides Zinc Phosphide and Brodifacoum against Field Rats of the Pothwar Region, Pakistan

Authors: Nadeem Munawar, David Galbraith, Tariq Mahmood

Abstract:

Rodenticides are often included as part of an integrated pest management approach for managing rodent species since they are relatively quick and inexpensive to apply. The current field study was conducted to evaluate the effectiveness of formulated baits of zinc phosphide (2%) and the second generation anticoagulant brodifacoum (0.005%) against field rats inhabiting a wheat-groundnut cropping system. Burrow baiting was initiated at the early flowering stages of the respective crops, and continued through three growth stages (tillering / peg formation, flowering, and maturity). Three treatments were done at equal time intervals, with the final baiting being about 2 weeks before harvest. Treatment efficacy of the trials was assessed through counts of active rodent burrows before and after treatments at the three growth stages of these crops. The results indicated variable degrees of reduction in burrow activities following the three bait applications. The reductions in rodent activity in wheat were: 88.8% (at tillering), 92%, (at flowering/grain formation), and 95.5% (at maturity). In groundnut, the rodent activities were reduced by 91.8%, 93.5% and 95.8% at sowing, peg formation, and maturity stages, respectively. The estimated mortality at all three growth stages of both wheat and groundnut ranged between 60-85%. We recommend that a field efficacy study should be conducted with zinc phosphide and brodifacoum bait formulations to determine their field performance in the reduction of agricultural damage by rodent pest species. It is a promising alternative approach for use of the most potent second-generation anticoagulant (brodifacoum) in resistance management, particularly with respect to reducing environmental risks and secondary poisoning.

Keywords: brodifacoum, burrow baiting, second-generation anticoagulant, synergistic effect

Procedia PDF Downloads 121
4357 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization

Procedia PDF Downloads 202
4356 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 245
4355 Cooperative Jamming for Implantable Medical Device Security

Authors: Kim Lytle, Tim Talty, Alan Michaels, Jeff Reed

Abstract:

Implantable medical devices (IMDs) are medically necessary devices embedded in the human body that monitor chronic disorders or automatically deliver therapies. Most IMDs have wireless capabilities that allow them to share data with an offboard programming device to help medical providers monitor the patient’s health while giving the patient more insight into their condition. However, serious security concerns have arisen as researchers demonstrated these devices could be hacked to obtain sensitive information or harm the patient. Cooperative jamming can be used to prevent privileged information leaks by maintaining an adequate signal-to-noise ratio at the intended receiver while minimizing signal power elsewhere. This paper uses ray tracing to demonstrate how a low number of friendly nodes abiding by Bluetooth Low Energy (BLE) transmission regulations can enhance IMD communication security in an office environment, which in turn may inform how companies and individuals can protect their proprietary and personal information.

Keywords: implantable biomedical devices, communication system security, array signal processing, ray tracing

Procedia PDF Downloads 110
4354 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 113
4353 Impact of Different Fuel Inlet Diameters onto the NOx Emissions in a Hydrogen Combustor

Authors: Annapurna Basavaraju, Arianna Mastrodonato, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is creating awareness for the overall reduction of NOx emissions by 80% in its vision 2020. Hence this promotes the researchers to work on novel technologies, one such technology is the use of alternative fuels. Among these fuels hydrogen is of interest due to its one and only significant pollutant NOx. The influence of NOx formation due to hydrogen combustion depends on various parameters such as air pressure, inlet air temperature, air to fuel jet momentum ratio etc. Appropriately, this research is motivated to investigate the impact of the air to fuel jet momentum ratio onto the NOx formation in a hydrogen combustion chamber for aircraft engines. The air to jet fuel momentum is defined as the ratio of impulse/momentum of air with respect to the momentum of fuel. The experiments were performed in an existing combustion chamber that has been previously tested for methane. Premix of the reactants has not been considered due to the high reactivity of the hydrogen and high risk of a flashback. In order to create a less rich zone of reaction at the burner and to decrease the emissions, a forced internal recirculation flow has been achieved by integrating a plate similar to honeycomb structure, suitable to the geometry of the liner. The liner has been provided with an external cooling system to avoid the increase of local temperatures and in turn the reaction rate of the NOx formation. The injected air has been preheated to aim at so called flameless combustion. The air to fuel jet momentum ratio has been inspected by changing the area of fuel inlets and keeping the number of fuel inlets constant in order to alter the fuel jet momentum, thus maintaining the homogeneity of the flow. Within this analysis, promising results for a flameless combustion have been achieved. For a constant number of fuel inlets, it was seen that the reduction of the fuel inlet diameter resulted in decrease of air to fuel jet momentum ratio in turn lowering the NOx emissions.

Keywords: combustion chamber, hydrogen, jet momentum, NOx emission

Procedia PDF Downloads 291
4352 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems

Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang

Abstract:

In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.

Keywords: fault detection, linear parameter varying, model predictive control, set theory

Procedia PDF Downloads 251
4351 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness

Procedia PDF Downloads 332
4350 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models

Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah

Abstract:

In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.

Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model

Procedia PDF Downloads 238
4349 The Impact of Green Building Envelopes on the Urban Microclimate of the Urban Canopy-Case Study: Fawzy Moaz Street, Alexandria, Egypt

Authors: Amany Haridy, Ahmed Elseragy, Fahd Omar

Abstract:

The issue of temperature increase in the urban microclimate has been at the center of attention recently, especially in dense urban areas, such as the City of Alexandria in Egypt, where building surfaces have become the dominant element (more than green areas and streets). Temperatures have been rising during daytime as well as nighttime, however, the research focused on the rise of air temperature at night, a phenomenon known as the urban heat island. This phenomenon has many effects on ecological life, as well as human health. This study provided evidence of the possibility of reducing the urban heat island by using a green building envelope (green wall and green roof) in Alexandria, Egypt. This City has witnessed a boom in growth in its urban fabric and population. A simulation analysis using the Envi-met software to find the ratio of air temperature reduction was performed. The simulation depended on the orientation of the green areas and their density, which was defined through a process of climatic analysis made by the Diva plugin using the Grasshopper software. Results showed that the reduction in air temperature varies from 0.8–2.0 °C, increasing with the increasing density of green areas. Many systems of green wall and green roof can be found in the local market. However, treating an existing building requires a careful choice of system to fit the building construction load and the surrounding nature. Among the systems of choice, there was the ‘geometric system’ of vertical greening that can be fixed on a light aluminum structure for walls and the extensive green system for roofs. Finally, native plants were the best choice in the long term because they fare well in the local climate.

Keywords: envi-met, green building envelope, urban heat island, urban microclimate

Procedia PDF Downloads 205
4348 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams

Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar

Abstract:

A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.

Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 156
4347 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 380
4346 Nexus Between Library and Information Science Education Training and Practice in Nigeria: A Critical Assessment of the Synergy

Authors: Adebayo Emmanuel Layi

Abstract:

Library and Information Science Education is about six (6) decades old in Nigeria. The first Library School was established in 1962 at the University of Ibadan, and since then, several institutions have been running the programme under various certifications, providing the manpower needs of professionals for libraries. As at June 2023, Nigeria has close to a thousand (1000) tertiary institutions and all needing the services of librarians. Apart from the tertiary institutions, several libraries exit in various establishments, both government, private and non-governmental organisations. These has underscored the enormous need for trained librarians for the libraries in these places. The Nexus between LIS Education training and Practice is like a puzzle of egg and chick, which one came first and against this background, this paper examined the roles of the colonial masters in educational development in Africa and vis-à-vis the influence of great library educators such as Melvil Dewey and other educators and the journey through Nigeria institutions. Despite the sound footing of LIS Education, Noise which seems to be a major obstacle on the practice as well as mending the broken link were all examined in the paper. Strategies and the way forward for overall development are suggested.

Keywords: nexus, education, training, synergy

Procedia PDF Downloads 91
4345 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing

Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo

Abstract:

Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.

Keywords: additive manufacturing, locking compression plate, finite element, topology optimization

Procedia PDF Downloads 196
4344 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 117
4343 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.

Keywords: active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition

Procedia PDF Downloads 1017
4342 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview

Authors: Syed Ali Shahbaz Shah

Abstract:

In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.

Keywords: asphaltic roads, asphalt binder, distress, raveling

Procedia PDF Downloads 113
4341 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods

Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.

Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language

Procedia PDF Downloads 557
4340 Development of Automatic Farm Manure Spreading Machine for Orchards

Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce

Abstract:

Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.

Keywords: automatic control system, conveyor belt application, orchard, solid farm manure

Procedia PDF Downloads 284
4339 Analyzing On-Line Process Data for Industrial Production Quality Control

Authors: Hyun-Woo Cho

Abstract:

The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.

Keywords: detection, filtering, monitoring, process data

Procedia PDF Downloads 557
4338 Inflation and Unemployment Rates as Indicators of the Transition European Union Countries Monetary Policy Orientation

Authors: Elza Jurun, Damir Piplica, Tea Poklepović

Abstract:

Numerous studies carried out in the developed western democratic countries have shown that the ideological framework of the governing party has a significant influence on the monetary policy. The executive authority consisting of a left-wing party gives a higher weight to unemployment suppression and central bank implements a more expansionary monetary policy. On the other hand, right-wing governing party considers the monetary stability to be more important than unemployment suppression and in such a political framework the main macroeconomic objective becomes the inflation rate reduction. The political framework conditions in the transition countries which are new European Union (EU) members are still highly specific in relation to the other EU member countries. In the focus of this paper is the question whether the same monetary policy principles are valid in these transitional countries as well as they apply in developed western democratic EU member countries. The data base consists of inflation rate and unemployment rate for 11 transitional EU member countries covering the period from 2001 to 2012. The essential information for each of these 11 countries and for each year of the observed period is right or left political orientation of the ruling party. In this paper we use t-statistics to test our hypothesis that there are differences in inflation and unemployment between right and left political orientation of the governing party. To explore the influence of different countries, through years and different political orientations descriptive statistics is used. Inflation and unemployment should be strongly negatively correlated through time, which is tested using Pearson correlation coefficient. Regarding the fact whether the governing authority is consisted from left or right politically oriented parties, monetary authorities will adjust its policy setting the higher priority on lower inflation or unemployment reduction.

Keywords: inflation rate, monetary policy orientation, transition EU countries, unemployment rate

Procedia PDF Downloads 439
4337 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble

Authors: Jaehong Yu, Seoung Bum Kim

Abstract:

Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.

Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking

Procedia PDF Downloads 334
4336 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 514