Search results for: implicit neural representations
920 The Semiotic Analysis of Thai Social Contexts in Thai Post’s News Articles
Authors: Pakpoom Hannapha
Abstract:
This paper investigates the implications of social and political contexts in Thai Post’s news articles written by a columnist, Khon Plai Soy. Samples included twenty eight news articles published between 28th May 2015 and 28th June 2015 selected and analyzed according to Semiotics including implications, connotation, cultural politics, and Thai usage in newspaper articles. The data analysis can be divided into two parts; first, an analysis of signs/signifiers appearing in the articles and second, an analysis of the columnist’s purposes. This study demonstrated representations of signs in the selected articles that were categorized into four groups: events, actions, persons, and organizations. In this study, implications of the news articles were analyzed in two aspects according to Semiotics. It was found that the columnist mostly points out purposes for education, facts, and personal opinions in his works. Also, he offers some solutions to problems discussed in the articles. The writer often explicated knowledge and facts in accordance with either his personal opinions or problem-solutions. According to the research result, studying the implications of news articles in the Thai Post based on the Semiotic approach can help clarify and understand connotative meanings in terms of contents and the writer’s purposes. This paper can enhance readers’ understanding of Semiotic implications through signs and meanings in the texts and thus be used as a model to explore other political news articlesKeywords: semiotic analysis, Thai social contexts, Thai Post’s news, articles
Procedia PDF Downloads 245919 Drawings Reveal Beliefs of Japanese University Students
Authors: Sakae Suzuki
Abstract:
Although Japanese students study English for six years in secondary schools, they demonstrate little success with it when they enter higher education. Learners’ beliefs can predict the future behavior of students, so it may be effective to investigate how learners’ beliefs limit their success and how beliefs might be nudged in a positive direction. While many researchers still depend on a questionnaire called BALLI to reveal explicit beliefs, alternative approaches, especially those designed to reveal implicit beliefs, might be helpful for promoting learning. The present study seeks to identify beliefs with a discursive approach using visual metaphors and narratives. Employing a sociocultural framework, this study investigates how students’ beliefs are revealed by drawings of themselves and their surrounding environments and artifacts while they are engaged in language learning. Research questions are: (1) Can we identify beliefs through an analysis of students’ visual narratives? (2) What environments and artifacts can be found in students’ drawings, and what do they mean? (3) To what extent do students see language learning as a solitary, rather than a social, activity? Participants are university students majoring in science and technology in Japan. The questionnaire was administered to 70 entering students in April, 2014. Data included students drawings of themselves as learners of English as well as written descriptions of students’ backgrounds, English-learning experiences, and analogies and metaphors that they used in written descriptions of themselves as learners. Data will be analyzed qualitatively and quantitatively. Anticipated results include students’ perceptions of themselves as language learners, including their sense of agency, awareness of artifacts, and social contexts of language learning. Comments will be made on implications for teaching, as well as the use of visual narratives as research tools, and recommended further research.Keywords: drawings, learners' beliefs, metaphors, BALLI
Procedia PDF Downloads 492918 An Artificial Neural Network Model Based Study of Seismic Wave
Authors: Hemant Kumar, Nilendu Das
Abstract:
A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.Keywords: ANN, Bayesion class, earthquakes, IMD
Procedia PDF Downloads 127917 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study
Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.
Abstract:
Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧGKeywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation
Procedia PDF Downloads 151916 Glaucoma Detection in Retinal Tomography Using the Vision Transformer
Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan
Abstract:
Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning
Procedia PDF Downloads 194915 Numerical Studies on 2D and 3D Boundary Layer Blockage and External Flow Choking at Wing in Ground Effect
Authors: K. Dhanalakshmi, N. Deepak, E. Manikandan, S. Kanagaraj, M. Sulthan Ariff Rahman, P. Chilambarasan C. Abhimanyu, C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar
Abstract:
In this paper using a validated double precision, density-based implicit standard k-ε model, the detailed 2D and 3D numerical studies have been carried out to examine the external flow choking at wing-in-ground (WIG) effect craft. The CFD code is calibrated using the exact solution based on the Sanal flow choking condition for adiabatic flows. We observed that at the identical WIG effect conditions the numerically predicted 2D boundary layer blockage is significantly higher than the 3D case and as a result, the airfoil exhibited an early external flow choking than the corresponding wing, which is corroborated with the exact solution. We concluded that, in lieu of the conventional 2D numerical simulation, it is invariably beneficial to go for a realistic 3D simulation of the wing in ground effect, which is analogous and would have the aspects of a real-time parametric flow. We inferred that under the identical flying conditions the chances of external flow choking at WIG effect is higher for conventional aircraft than an aircraft facilitating a divergent channel effect at the bottom surface of the fuselage as proposed herein. We concluded that the fuselage and wings integrated geometry optimization can improve the overall aerodynamic performance of WIG craft. This study is a pointer to the designers and/or pilots for perceiving the zone of danger a priori due to the anticipated external flow choking at WIG effect craft for safe flying at the close proximity of the terrain and the dynamic surface of the marine.Keywords: boundary layer blockage, chord dominated ground effect, external flow choking, WIG effect
Procedia PDF Downloads 272914 From Connected Family to Disconnection for Teens
Authors: Jocelyn Lachance, Francis Jauréguiberry
Abstract:
In a few years, the exceptionality of the situation of an individual who could be reached at any time and at any time was replaced by the normality of instantly hearing the voice or immediately seeing the face of the person. This participates in the transformation of our representations of time and space, which gives rise to new expectations. Expectations that parents formulate more or less clearly to their children. The obligation to remain reachable seems to be asserting itself as a general norm which, having imposed itself on adults, now extends to the youngest. In the case of parents and their children, the rationale for this ongoing connection is not always based on actual and imminent dangers. It is the potential for dangerous events that underpins the indisputable argument for the importance of remaining reachable. It is the contingent nature of the risks that imposes itself on these young people as an argument of authority. By entering this connected world, the younger generations also end up adhering in many cases to this reassuring standard of connection. Many teenagers in ours researches nonetheless firmly believe that their freedom of movement is subject to the obligation to carry their smartphone with them. In this way, a connection "pact" is generally established, concluded under pressure, which implies first and foremost that contact be possible at any time, hence the importance of keeping it within reach, and often of '' be attentive to calls and texts sent by parents, at the risk of losing a recently acquired freedom. In this context, if adolescents are growing up in a connected world today, it is also because of the connection the parents are expecting from them. In our conference, by evoking situations reported by teenagers and parents of teenagers during our surveys, we propose to think about the role of the parents in making their child connected and about the desire of the disconnection of the teens.Keywords: connection, disconnection, smartphone, parents, ritual
Procedia PDF Downloads 196913 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 30912 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver
Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro
Abstract:
This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance
Procedia PDF Downloads 395911 Using Thinking Blocks to Encourage the Use of Higher Order Thinking Skills among Students When Solving Problems on Fractions
Authors: Abdul Halim Abdullah, Nur Liyana Zainal Abidin, Mahani Mokhtar
Abstract:
Problem-solving is an activity which can encourage students to use Higher Order Thinking Skills (HOTS). Learning fractions can be challenging for students since empirical evidence shows that students experience difficulties in solving the fraction problems. However, visual methods can help students to overcome the difficulties since the methods help students to make meaningful visual representations and link abstract concepts in Mathematics. Therefore, the purpose of this study was to investigate whether there were any changes in students’ HOTS at the four highest levels when learning the fractions by using Thinking Blocks. 54 students participated in a quasi-experiment using pre-tests and post-tests. Students were divided into two groups. The experimental group (n=32) received a treatment to improve the students’ HOTS and the other group acted as the control group (n=22) which used a traditional method. Data were analysed by using Mann-Whitney test. The results indicated that during post-test, students who used Thinking Blocks showed significant improvement in their HOTS level (p=0.000). In addition, the results of post-test also showed that the students’ performance improved significantly at the four highest levels of HOTS; namely, application (p=0.001), analyse (p=0.000), evaluate (p=0.000), and create (p=0.000). Therefore, it can be concluded that Thinking Blocks can effectively encourage students to use the four highest levels of HOTS which consequently enable them to solve fractions problems successfully.Keywords: Thinking Blocks, Higher Order Thinking Skills (HOTS), fractions, problem solving
Procedia PDF Downloads 273910 Novel Phenolic Biopolyether with Potential Therapeutic Effect
Authors: V.Barbakadze, L.Gogilashvili, L.Amiranashvili, M.Merlani, K.Mulkijanyan
Abstract:
The high-molecular fractions from the several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S. officinale, and Anchusa italica were isolated. According to IR, 13C and 1H NMR, 2D heteronuclear 1H/13C HSQC spectral data and 1D NOE experiment, the main structural element of these preparations was found to be a regularly substituted polyoxyethylene, namely poly[3-(3,4-dihydroxyenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Such caffeic acid-derived biopolymer to our knowledge has not been known and has been identified for the first time. This compound represents a new class of natural polyethers with a residue of 3-(3,4-dihydroxyphenyl)glyceric acid as the repeating unit. Most of the carboxylic groups of PDPGA from A. italica unlike the polymer of S. asperum, S. caucasicum, and S. officinale are methylated. The 2D DOSY experiment gave the similar diffusion coefficient for the methylated and non-methylated signals of A. italica PDPGA. Both sets of signals fell in the same horizontal. This would imply a similar molecular weight for methylated and non-methylated polymers. This was further evidenced by graphic representations of the intensity decay of the 1H signals of aromatic H-2″ and H-1 at δ 7.16 and 5.24 and that of the methoxy group at δ 3.85. These three signals essentially showed the same curve shape. According to results of in vitro and in vivo experiments PDPGA of S.asperum and S.caucasicum could be considered as potential anti-inflammatory, wound healing and anti-cancer therapeutic agent.Keywords: caffeic acid-derived polyether, poly[3-(3, 4-dihydroxyphenyl)glyceric acid], poly[oxy-1-carboxy-2-(3, 4-dihydroxyphenyl)ethylene], symphytum, anchusa
Procedia PDF Downloads 405909 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector
Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner
Abstract:
Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics
Procedia PDF Downloads 462908 Morpho-Syntactic Analysis of Temporal Realities in Esan and English Languages
Authors: Oremire Judith Ehibor, Goddy Uwa Osimen, Rebecca Uduakobong Adesiyan
Abstract:
Temporal realities/expressions are crucial in human conversations, and they vary across languages. This study assesses areas of temporal realities. It examines how tense and aspect are marked in Esan and English languages and uncovers temporal expressions. Esan language, an indigenous language within the Edo linguistic group in Nigeria, exhibits a different structural system of tense aspects from that of the English language. The different representations, usage, and flow of these elements may possibly impinge on usage, which could result in limited usage by Esan-English learners. Theoretical insights are drawn from Chomsky’s Principles and Parameters of the Universal Grammar, with the descriptive method of analysis employed. Findings revealed that temporal realities in both languages vary in representation and usage; identifying the differences would enable effective usage and avoid any challenge in the morphosyntactic analysis of these aspects. Given this insight, the study recommends improved teaching and learning strategies by providing teaching resources that highlight differences in Esan and English tense and aspect. Educators should first identify the differences that exist before teaching. This should be sufficiently handled, as it would enable improved learning and effective usage, as well as avoid challenging morphosyntactic analysis. The study concludes that understanding the varying temporal realities of both languages would enhance effective usage and curb unnecessary generalisations.Keywords: tense, aspect, Esan and English languages, principles and parameters
Procedia PDF Downloads 7907 The Political Haunting of “Martyrdom” in the Palestinian Context
Authors: Mai Awad
Abstract:
This paper aims to focus on the phenomenon of martyrdom—particularly its performative aspect—and how social and popular cultural representations address the multiple meanings of the loaded image of a Palestinian martyr. This focus will help us to explore the possible reasons that might push Palestinians to consider pursuing “martyrdom” or suicide operations. Tracing what happened in the past and what is currently happening (that is, haunting) will aid in theorizing how the act/practice of “martyrdom” is produced. It is believed that there are social and political forces, particularly in a colonial society like Palestine, that influence the subject and its experience. But what is unique about this paper is its attempt to disclose the invisible, hidden narratives and complexities of Palestinian life that we do not see. By giving “martyrs” a chance to speak and express their own narratives—since “martyrs” usually leave written letters for their families, which are published after their death—this study must broaden the whole picture and discuss what is missing. The analytic method to be used: For the methodology, the paper recruits discourse analysis as a method for tracing the emergence, circulation, and productivity of the martyrdom discourse across a range of social practices in Palestinians’ everyday life after the Nakba. The paper analyzes the letters that “martyrs” left to their families, relatives, and the Palestinian community after their death. By letting “martyrs” speak for themselves and hearing their unique discourses, the research would suggest that more explanation is needed to describe the “martyr” identity. Hence, it is not possible to study the “martyr” identity in Palestine without understanding the colonial context that governs it and shapes their subjective experience.Keywords: martyrdom, palestine, haunting, nakba 1948
Procedia PDF Downloads 70906 Making Creative Ethnography through Droned Mode of Engagements
Authors: Elin Linder
Abstract:
Ethnographic endeavors feature a long history of creative modes of engagements, and anthropology an equally long critique of its disciplinary attention to worded representations of beyond worded experiences. Curious and critical as our research comes about, takes place, unfolds, and develops, processes of documenting, exploring, experiencing, and producing knowledge commonly evolve as intrinsic parts of our situated wishes to make sense of the worlds we study. We may imagine to do one thing and to use a specific mode of fieldnoting, only to end up doing something else, such as to capture dynamics and dimensions otherwise not attentively engaged or even lost. This paper builds on such an experience, and it acts window to open the conversation for doing and representing ethnographic work as creatively as it was undertaken. Expressively and actively undertaken by means of sensuous scholarship, fieldworking in the world of olivicoltura in Apulia intriguingly advanced into resourcefully embodied research using a drone. While the drone first and foremost allowed perspectives that one as a human is largely and physically incapable of exploring, it rapidly emerged into a mode of engagement that probed critical question how one comes to learn how to see that which one watches, listen to that which one hears, smell that which one scents, feel that which one touch, and gather that which one experience. This paper develops how the drone incorporated a transition of a particularly situated ethnographic sense of attention, all while visualizing how imaginative conceptualizations enable unexpected modes of multimodal knowing in much multisensorial worlds of being.Keywords: drone, multimodality, sensuous scholarship, critical creativity, ethnographic practice
Procedia PDF Downloads 75905 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 80904 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 85903 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column
Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon
Abstract:
When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 156902 Learning from Dendrites: Improving the Point Neuron Model
Authors: Alexander Vandesompele, Joni Dambre
Abstract:
The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.Keywords: dendritic computation, spiking neural networks, point neuron model
Procedia PDF Downloads 134901 An Exploratory Study on Experiences of Menarche and Menstruation among Adolescent Girls
Authors: Bhawna Devi, Girishwar Misra, Rajni Sahni
Abstract:
Menarche and menstruation is a nearly universal experience in adolescent girls’ lives, yet based on several observations it has been found that it is rarely explicitly talked about, and remains poorly understood. By menarche, girls are likely to have been influenced not only by cultural stereotypes about menstruation, but also by information acquired through significant others. Their own expectations about menstruation are likely to influence their reports of menarcheal experience. The aim of this study is to examine how girls construct meaning around menarche and menstruation in social interactions and specific contexts along with conceptualized experiences which is ‘owned’ by individual girls. Twenty adolescent girls from New Delhi (India), between the ages of 12 to 19 years (mean age = 15.1) participated in the study. Semi-structured interviews were conducted to capture the nuances of menarche and menstrual experiences of these twenty adolescent girls. Thematic analysis was used to analyze the data. From the detailed analysis of transcribed data main themes that emerged were- Menarche: A Trammeled Sky to Fly, Menarche as Flashbulb Memory, Hidden Secret: Shame and Fear, Hallmark of Womanhood, Menarche as Illness. Therefore, the finding unfolds that menarche and menstruation were largely constructed as embarrassing, shameful and something to be hidden, specifically within the school context and in general when they are outside of their home. Menstruation was also constructed as illness that programmed ‘feeling of weaknesses’ into them. The production and perpetuation of gender-related difference narratives was also evident. Implications for individuals, as well as for the subjugation of girls and women, are discussed, and it is argued that current negative representations of, and practices in relation to, menarche and menstruation need to be challenged.Keywords: embarrassment, gender-related difference, hidden secret, illness, menarche and menstruation
Procedia PDF Downloads 147900 Impact of Story-Telling through Indian Textiles: Mata Ni Pachedi and Pabuji Ki Phad
Authors: Lavina N. Bhaskar, Ashima Tiwari
Abstract:
In the endeavour of connecting culture to stories, textile to narratives and people to material, authors analyse the impact of narratives in two popular Indian textiles namely - Mata Ni Pachedi and Pabuji Ki Phad. These textiles narrate people’s tale or Folk tale. Each textile has a style or format in which the story is told (and it is visual). Mata Ni Pachedi, when translated into the English language literally means behind the mother goddess. Mata Ni Pachedi is an Indian textile from the province of Gujarat which constitutes an entire temple of the goddess, with the idol herself in it. On the other hand, Pabuji ki Phad is scroll painting of folk deities of Rajasthan, narrated by Bhopas (the Priest singers of Rajasthan). These textiles narrate stories of ordinary people with extraordinary courage, of social reform, and people’s belief in the divine. Authors take to task their years of craft-cluster study conducted in the past and use existing literature to map their journey in the preliminary phase of research. And then carried out an ethnographic study by visiting the origins of these textiles in Rajasthan and Gujrat (in India), met artisans and their families who are still practicing these dying art form, in order to understand the format and impact of textile story-telling. This research paper talks about the narrative in Indian textiles; the stories in them, artisans and their life as metaphorical representations of the People in Mata Ni Pachedi and Pabuji Ki Phad.Keywords: cultural derivatives, folk-tale, Indo-Narratives, Indology
Procedia PDF Downloads 409899 'Detective Chinatown' Series: Writing and Rewriting of Orientalism through the Lens of Culture Industry
Authors: Cai Yiting
Abstract:
As China's globalization has accelerated, Chinese films have begun to explore and express foreign cultures with greater frequency while simultaneously disseminating Chinese culture. Films shot abroad, including Finding Mr. Right (2013), Somewhere Only We Know (2015), and Wolf Warrior 2 (2017), and others, can be viewed as a reflection of how Chinese cinema conceptualizes and represents foreign countries in the context of globalization. Furthermore, they facilitate the exchange of Chinese and foreign cultures in the context of China's ‘going out’ policy and the Belt and Road Initiative. Nevertheless, it is apparent that these films are primarily motivated by commercial considerations with regard to their initial release. The consistent placement of the Chinatown Detective' film series in the Chinese New Year slot is indicative of the significant influence of the cultural industry on the series' creation. Moreover, the series represents Chen Sicheng's inaugural venture into filming in a multitude of international locations. This paper examines the film series Detective Chinatown through the lens of the cultural industry, analyzing how its production and presentation cater to the demands of the cultural industry by presenting Orientalism and contributing new connotations to it. The series, a product of standardized mass production, commodification and global appeal, reflects Orientalist representations through the exoticization of Chinese culture and the stereotypical and commercial-oriented imagination of Bangkok, New York and Tokyo. This study provides an understanding of the film series' role in contributing to contemporary Orientalism in the context of the culture industry.Keywords: orientalism, culture industry, Chinese globalisation, Detective Chinatown
Procedia PDF Downloads 21898 Transferring Data from Glucometer to Mobile Device via Bluetooth with Arduino Technology
Authors: Tolga Hayit, Ucman Ergun, Ugur Fidan
Abstract:
Being healthy is undoubtedly an indispensable necessity for human life. With technological improvements, in the literature, various health monitoring and imaging systems have been developed to satisfy your health needs. In this context, the work of monitoring and recording the data of individual health monitoring data via wireless technology is also being part of these studies. Nowadays, mobile devices which are located in almost every house and which become indispensable of our life and have wireless technology infrastructure have an important place of making follow-up health everywhere and every time because these devices were using in the health monitoring systems. In this study, Arduino an open-source microcontroller card was used in which a sample sugar measuring device was connected in series. In this way, the glucose data (glucose ratio, time) obtained with the glucometer is transferred to the mobile device based on the Android operating system with the Bluetooth technology channel. A mobile application was developed using the Apache Cordova framework for listing data, presenting graphically and reading data over Arduino. Apache Cordova, HTML, Javascript and CSS are used in coding section. The data received from the glucometer is stored in the local database of the mobile device. It is intended that people can transfer their measurements to their mobile device by using wireless technology and access the graphical representations of their data. In this context, the aim of the study is to be able to perform health monitoring by using different wireless technologies in mobile devices that can respond to different wireless technologies at present. Thus, that will contribute the other works done in this area.Keywords: Arduino, Bluetooth, glucose measurement, mobile health monitoring
Procedia PDF Downloads 325897 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 106896 Understanding Mental Constructs of Language and Emotion
Authors: Sakshi Ghai
Abstract:
The word ‘emotion’ has been microscopically studied through psychological, anthropological and biological lenses and have indubitably been one of the most researched concepts as, in all situations and reactions that constitute human life, emotions form the very niche of our mutual existence. While understanding the social aspects of cognition, one can realize that emotions are deeply interwoven with language and thereby are pivotal in inducing human actions and behavior. The society or the outward social structure is the result of the inward psychological structure of our human relationships, for the individual is the result of the total experience, knowledge and conduct of man. The aim of this paper is threefold: first, to establish the relation between mental representations of emotions and its neuropsychological connection with language on a conscious and sub-conscious level; secondly, to describe how innate, basic and higher cognitive emotions affect the constantly changing state of an agent and peruse its assistance in determining the moral compass within all beings. Lastly, in the course of this paper, the concept of the architecture of mind is explored considering how it has developed an ability to display adaptive emotional states and responses, which are in sync with the language of thought. For every response to the social environment is so deeply determined by the very social milieu in which one is situated, language has a fundamental role in constructing emotions and articulating behavior. Being linguistic beings, we tend to associate emotion, feelings and other aspects of inwards mental states intrinsically with the language we use. This paper aims to devise a discursive approach to understand how emotions are fabricated, intertwined with the mental constructs further expressed and communicated through the various units of language.Keywords: mental representation, emotion, language, psychology
Procedia PDF Downloads 290895 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 139894 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin
Authors: Boualla Nabila
Abstract:
The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram
Procedia PDF Downloads 277893 [Keynote Talk]: Caught in the Tractorbeam of Larger Influences: The Filtration of Innovation in Education Technology Design
Authors: Justin D. Olmanson, Fitsum Abebe, Valerie Jones, Eric Kyle, Xianquan Liu, Katherine Robbins, Guieswende Rouamba
Abstract:
The history of education technology--and designing, adapting, and adopting technologies for use in educational spaces--is nuanced, complex, and dynamic. Yet, despite a range of continually emerging technologies, the design and development process often yields results that appear quite similar in terms of affordances and interactions. Through this study we (1) verify the extent to which designs have been constrained, (2) consider what might account for it, and (3) offer a way forward in terms of how we might identify and strategically sidestep these influences--thereby increasing the diversity of our designs with a given technology or within a particular learning domain. We begin our inquiry from the perspective that a host of co-influencing elements, fields, and meta narratives converge on the education technology design process to exert a tangible, often homogenizing effect on the resultant designs. We identify several elements that influence design in often implicit or unquestioned ways (e.g. curriculum, learning theory, economics, learning context, pedagogy), we describe our methodology for identifying the elemental positionality embedded in a design, we direct our analysis to a particular subset of technologies in the field of literacy, and unpack our findings. Our early analysis suggests that the majority of education technologies designed for use/used in US public schools are heavily influenced by a handful of mainstream theories and meta narratives. These findings have implications for how we approach the education technology design process--which we use to suggest alternative methods for designing/ developing with emerging technologies. Our analytical process and re conceptualized design process hold the potential to diversify the ways emerging and established technologies get incorporated into our designs.Keywords: curriculum, design, innovation, meta narratives
Procedia PDF Downloads 512892 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases
Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal
Abstract:
This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare
Procedia PDF Downloads 117891 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 438