Search results for: feature analysis
27490 The Great Mimicker: A Case of Disseminated Tuberculosis
Authors: W. Ling, Mohamed Saufi Bin Awang
Abstract:
Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment.Keywords: central nervous system tuberculosis, intracranial tuberculosis, tuberculous encephalopathy, tuberculous meningitis
Procedia PDF Downloads 19127489 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions
Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh
Abstract:
Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility
Procedia PDF Downloads 5327488 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing
Authors: Kashima Arora, Monika Tomar, Vinay Gupta
Abstract:
Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film
Procedia PDF Downloads 18227487 Measurement and Analysis of Human Hand Kinematics
Authors: Tamara Grujic, Mirjana Bonkovic
Abstract:
Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement
Procedia PDF Downloads 46527486 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification
Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli
Abstract:
Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics
Procedia PDF Downloads 7227485 Structural Reliability of Existing Structures: A Case Study
Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol
Abstract:
A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.Keywords: structural reliability, concrete structures, FORM, Monte Carlo simulation
Procedia PDF Downloads 51927484 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica
Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson
Abstract:
In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.Keywords: machine learning, sentiment analysis, social media, supervised learning
Procedia PDF Downloads 44727483 Detection of Image Blur and Its Restoration for Image Enhancement
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.Keywords: image enhancement, motion analysis, motion detection, motion estimation
Procedia PDF Downloads 29027482 The Syntactic Features of Islamic Legal Texts and Their Implications for Translation
Authors: Rafat Y. Alwazna
Abstract:
Certain religious texts are deemed part of legal texts that are characterised by high sensitivity and sacredness. Amongst such religious texts are Islamic legal texts that are replete with Islamic legal terms that designate particular legal concepts peculiar to Islamic legal system and legal culture. However, from the syntactic perspective, Islamic legal texts prove lengthy, condensed and convoluted, with little use of punctuation system, but with an extensive use of subordinations and co-ordinations, which separate the main verb from the subject, and which, of course, carry a heavy load of legal detail. The present paper seeks to examine the syntactic features of Islamic legal texts through analysing a short text of Islamic jurisprudence in an attempt at exploring the syntactic features that characterise this type of legal text. A translation of this text into legal English is then exercised to find the translation implications that have emerged as a result of the English translation. Based on these implications, the paper compares and contrasts the syntactic features of Islamic legal texts to those of legal English texts. Finally, the present paper argues that there are a number of syntactic features of Islamic legal texts, such as nominalisation, passivisation, little use of punctuation system, the use of the Arabic cohesive device, etc., which are also possessed by English legal texts except for the last feature and with some variations. The paper also claims that when rendering an Islamic legal text into legal English, certain implications emerge, such as the necessity of a sentence break, the omission of the cohesive device concerned and the increase in the use of nominalisation, passivisation, passive participles, and so on.Keywords: English legal texts, Islamic legal texts, nominalisation, participles, passivisation, syntactic features, translation implications
Procedia PDF Downloads 24127481 Endothelial Dysfunction in Non-Alcoholic Fatty Liver Disease: An Updated Meta-Analysis
Authors: Anit S. Malhotra, Ajay Duseja, Neelam Chadha
Abstract:
Endothelial dysfunction is a precursor to atherosclerosis, and flow-mediated dilatation (FMD) in the brachial artery is the commonest method to evaluate endothelial function in humans. Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders encountered in clinical practice. An earlier meta-analysis had quantitatively assessed the degree of endothelial dysfunction using FMD. However, the largest study investigating the relation of FMD with NAFLD was published after that meta-analysis. In addition, that meta-analysis did not include some studies, including one from our centre. Therefore, an updating the previous meta-analysis was considered important. We searched PubMed, Cochrane Library, Embase, Scopus, SCI, Google Scholar, conference proceedings, and references of included studies till June 2017 to identify observational studies evaluating endothelial function using FMD in patients with non-alcoholic fatty liver disease. Data was analyzed using MedCalc. Fourteen studies were found eligible for inclusion in the meta-analysis. Patients with NAFLD had lower brachial artery FMD as compared to controls, standardized mean difference (random effects model) being –1.279%; 95% confidence interval (CI), –1.478 to –0.914. The effect size became smaller after addition of the recent study with the largest sample size was included compared with the earlier meta-analysis. In conclusion, patients with NAFLD had low FMD values indicating that they are at a higher risk of cardiovascular disease although our results suggest the effect size is not as large as reported previously.Keywords: endothelial dysfunction, flow-mediated dilatation, meta-analysis, non-alcoholic fatty liver disease
Procedia PDF Downloads 19027480 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision
Authors: Arth Bohra, Marwa Mahmoud
Abstract:
In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.Keywords: soccer, corner kicks, AI, computer vision
Procedia PDF Downloads 17727479 Comprehensive Evaluation of COVID-19 Through Chest Images
Authors: Parisa Mansour
Abstract:
The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT
Procedia PDF Downloads 5927478 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 15927477 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 17027476 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 32827475 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations
Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan
Abstract:
In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling
Procedia PDF Downloads 32427474 Identifying Strategies for Improving Railway Services in Bangladesh
Authors: Armana Sabiha Huq, Tahmina Rahman Chowdhury
Abstract:
In this paper, based on the stated preference experiment, the service quality of Bangladesh Railway has been assessed, and particular importance has been given to investigate if there exists a relationship between service quality and safety. For investigation purposes, environmental and organizational factors were assumed to determine the safety performance of the railway. Data collected from the survey has been analyzed by importance-performance analysis (IPA). In this paper, a modification of the well-known importance-performance analysis (IPA) has been done by adopting the importance of the weights determined through a structural equation modeling (SEM) approach and by plotting the gap between importance and performance on a visual graph. It has been found that there exists a relationship between safety and serviceability to some extent. Limited resources are an important factor to improve the safety and serviceability condition of the BD railway. Moreover, it is observed that the limited resources available to monitor and improve the safety performance of railway.Keywords: importance-performance analysis, GAP-IPA, SEM, serviceability, safety, factor analysis
Procedia PDF Downloads 14427473 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material
Authors: Livia Guerini, Christian Paglia
Abstract:
In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP
Procedia PDF Downloads 14627472 GIS Based Public Transport Accessibility of Lahore using PTALs Model
Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari
Abstract:
Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis
Procedia PDF Downloads 43927471 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 15727470 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 43827469 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator
Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov
Abstract:
The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator
Procedia PDF Downloads 37827468 Disowning of ‘Our Lady of Alice Bhatti’ by Mohammad Hanif Through Gendered and Religious Discourse
Authors: Abrar Ajmal
Abstract:
The language used in literature reveals the culture and social gestalt of any society in which it has been constructed and consumed. This paper carries the same rationale, which aims to track certain socio-religious and cultural-economic disparities and discrepancies towards minorities, particularly Christians, in an Islamic re(public) where there is a clear majority of Muslims with the help of analysis of instances of language used in the narratives “Our Lady of Alice Bhatt” by Mohammad Hanif. It would highlight social inequalities practiced deeply in sociocultural discourse. Moreover, this research would also touch upon the question of gender discrimination and gender construction as a female entity in a male-chauvinistic scenic turnout using language since the novel revolves around communicative forfeits of Alice Bhatti’s life where she is fraying in fisticuffs to befit herself in a miss-fitted society. It would employ using Fairclough's framework for analysis to conduct a critical discourse analysis of the text at three axiom levels namely textual analysis, discursive practices, and socio-cultural analysis. Thus, the results would reveal textual findings in linguistic analysis, a range of embedded discourses in discursive practices, and consumption of the text into socio-cultural explications with the use of language and lexicalization employed in the selected excerpts.Keywords: gendered discourse, socio-economic disparities minorities, Islamization, analytical framework
Procedia PDF Downloads 6127467 Modern Trends in Foreign Direct Investments in Georgia
Authors: Rusudan Kinkladze, Guguli Kurashvili, Ketevan Chitaladze
Abstract:
Foreign direct investment is a driving force in the development of the interdependent national economies, and the study and analysis of investments is an urgent problem. It is particularly important for transitional economies, such as Georgia, and the study and analysis of investments is an urgent problem. Consequently, the goal of the research is the study and analysis of direct foreign investments in Georgia, and identification and forecasting of modern trends, and covers the period of 2006-2015. The study uses the methods of statistical observation, grouping and analysis, the methods of analytical indicators of time series, trend identification and the predicted values are calculated, as well as various literary and Internet sources relevant to the research. The findings showed that modern investment policy In Georgia is favorable for domestic as well as foreign investors. Georgia is still a net importer of investments. In 2015, the top 10 investing countries was led by Azerbaijan, United Kingdom and Netherlands, and the largest share of FDIs were allocated in the transport and communication sector; the financial sector was the second, followed by the health and social work sector, and the same trend will continue in the future.Keywords: foreign direct investments, methods, statistics, analysis
Procedia PDF Downloads 33327466 The Use of Multivariate Statistical and GIS for Characterization Groundwater Quality in Laghouat Region, Algeria
Authors: Rouighi Mustapha, Bouzid Laghaa Souad, Rouighi Tahar
Abstract:
Due to rain Shortage and the increase of population in the last years, wells excavation and groundwater use for different purposes had been increased without any planning. This is a great challenge for our country. Moreover, this scarcity of water resources in this region is unfortunately combined with rapid fresh water resources quality deterioration, due to salinity and contamination processes. Therefore, it is necessary to conduct the studies about groundwater quality in Algeria. In this work consists in the identification of the factors which influence the water quality parameters in Laghouat region by using statistical analysis Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and geographic information system (GIS) in an attempt to discriminate the sources of the variation of water quality variations. The results of PCA technique indicate that variables responsible for water quality composition are mainly related to soluble salts variables; natural processes and the nature of the rock which modifies significantly the water chemistry. Inferred from the positive correlation between K+ and NO3-, NO3- is believed to be human induced rather than naturally originated. In this study, the multivariate statistical analysis and GIS allows the hydrogeologist to have supplementary tools in the characterization and evaluating of aquifers.Keywords: cluster, analysis, GIS, groundwater, laghouat, quality
Procedia PDF Downloads 32627465 Adopted Method of Information System Strategy for Knowledge Management System: A Literature Review
Authors: Elin Cahyaningsih, Dana Indra Sensuse, Wahyu Catur Wibowo, Sofiyanti Indriasari
Abstract:
Bureaucracy reform program drives Indonesian government to change their management and supporting unit in order to enhance their organization performance. Information technology as one of supporting unit became one of strategic plan that organization tried to improve, because IT can automate and speed up process, reduce business process life cycle become more effective and efficient. Knowledge management system is a technology application for supporting knowledge management implementation in government which is requirement based on problem and potential functionality of each knowledge management process. Define knowledge management that suitable for each organization it is difficult, that why we should make the knowledge management system strategy as an alignment of knowledge management process in the organization. Knowledge management system is one of information system development in people perspective, because this system has high dependency in human interaction and participation. Strategic plan for developing knowledge management system can be determine using some of information system strategic methods. This research conducted to define type of strategic method of information system, stage of activity each method, the strategic method strength and weakness. The author use literature review methods for identify and classify strategic methods of information system for differentiate method type, categorize common activities, strength and weakness. Result of this research are determine and compare six strategic information system methods, there are Balanced Scorecard, Five Force Porter, SWOT analysis, Value Chain Analysis, Risk Analysis and Gap Analysis. Balanced Scorecard and Risk Analysis believe as common strategic method that usually used and have the highest excellence strength.Keywords: knowledge management system, balanced scorecard, five force, risk analysis, gap analysis, value chain analysis, SWOT analysis
Procedia PDF Downloads 48127464 Phrasemes With The Component 'Water' In Polish And Russian - Comparative Aspects
Authors: Aleksandra Majewska
Abstract:
The subject of this article is phrasemes with the component 'water' in Polish and Russian. The purpose of the study is to analyse the collocations from the point of view of lexis and semantics. The material for analysis was extracted from phraseological dictionaries of Polish and Russian. From the point of view of lexis, an analysis was made of the inflectional component 'water' in phrasal expressions in both languages. Then, the phrasemes were divided into their corresponding semantic groups. That division became the subject of another comparative analysis in a further step. Finally, the functioning of some phrasemes compounds in the contexts of modern Polish and Russian was shown.Keywords: lingustic, language, phraseme, polish and Russian
Procedia PDF Downloads 4427463 Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus
Authors: Lilis Kistriyani, Dine Olisvia, Lutfa Rahmawati
Abstract:
Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm.Keywords: face mask, edible film, plasticizer, flavonoid
Procedia PDF Downloads 17827462 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.Keywords: accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis
Procedia PDF Downloads 12527461 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 534