Search results for: wound models
5595 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1395594 Phenomena-Based Approach for Automated Generation of Process Options and Process Models
Authors: Parminder Kaur Heer, Alexei Lapkin
Abstract:
Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.Keywords: Phenomena, Process intensification, Process models , Process options
Procedia PDF Downloads 2305593 In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts
Authors: Kriyapa lairungruang, Arunporn Itharat
Abstract:
Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use.Keywords: antioxidant activity, cytotoxic activity, Laryngeal epidermoid carcinoma, Limonia acidissima L., oral epidermoid carcinoma
Procedia PDF Downloads 4775592 The Impact of Diabetes Mellitus on Skin and Soft Tissue Infections
Authors: Stephanie Cheng, Benjamin Poh, Vivyan Tay, Sachin Mathur
Abstract:
Aim: Diabetes mellitus (DM) is a worldwide pandemic affecting 500 million people. It is known to be associated with increased susceptibility to soft tissue infections (STI). Despite being a major public health burden, the literature relating the effects of DM and the presentation, severity and healing of STIs in general surgical patients remain limited. Methods: We conducted a retrospective review of all patients admitted with STI in a tertiary teaching hospital over a 12-month period. Patient demographics and surgical outcomes were collected and analyzed. Results: During the study period, 1059 patients were admitted for STIs, of which 936 (88%) required surgical intervention. Diabetic patients were presented with a higher body-mass index (BMI) (28 vs 26), larger abscess size (24 vs 14 cm²) and a longer length of stay (LOS)(4.4 days vs 2.9 days). They also underwent a higher proportion of wide debridement as well as application of negative pressure wound therapy (NPWT) (42% vs 35%). More diabetic patients underwent subsequent re-operation within the same sitting (8 vs 4). There were no differences in re-admission rates within 30 days nor subsequent abscess formation in those followed for 6 months. Conclusion: The incidence of STIs among DM patients represents a significant disease burden; surgeons should consider intensive patient counseling and partnering with primary care providers in order to help reduce the incidence of future STI admissions based on lifestyle modification and glucose control.Keywords: general surgery, emergency general surgery, acute care surgery, soft tissue infections, diabetes mellitus
Procedia PDF Downloads 465591 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification
Authors: Zhaoxin Luo, Michael Zhu
Abstract:
In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese
Procedia PDF Downloads 655590 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 995589 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning
Authors: Yinheng Li
Abstract:
The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.Keywords: in-context learning, prompt engineering, zero-shot learning, large language models
Procedia PDF Downloads 785588 The Potential of 48V HEV in Real Driving
Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay
Abstract:
This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.Keywords: customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system
Procedia PDF Downloads 5055587 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1615586 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load
Authors: Ritu Raj, Hrishikesh Dubey
Abstract:
This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients
Procedia PDF Downloads 1265585 Transforming Urban Living: How Co-Living Solutions Address Social Isolation, Foster Community, and Offer Innovative Approaches to Housing Challenges in Modern Cities
Authors: Yujie Lei
Abstract:
This article examines the evolving concept of urban living through the lens of co-living spaces, focusing on Liverpool. It explores how co-living can address challenges such as rising urban isolation, housing affordability, and social autism, particularly among younger generations. The research aims to understand how these spaces can mitigate social isolation and maximize urban space use. Using a case study approach, the study examines models like Superloft, co-office spaces, and platforms like Airbnb. Findings reveal that Liverpool’s co-living initiatives have gained popularity, offering flexibility and community engagement. This concept has the potential for expansion, not only for the younger generation but also for elderly communities, fostering intergenerational living. The dissertation concludes that co-living offers a sustainable alternative to traditional housing models, aligning with digital-age lifestyles that prioritize flexibility and community. It presents a promising framework for shaping the future of urban development.Keywords: co-living, urban design, social isolation, urban development, housing challenges
Procedia PDF Downloads 255584 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5595583 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic
Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink
Abstract:
Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction
Procedia PDF Downloads 1605582 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 1285581 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic
Authors: Sedat Yayla, Azhin Abdullah
Abstract:
In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)
Procedia PDF Downloads 2705580 Seismic Behaviour of CFST-RC Columns
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance
Procedia PDF Downloads 2435579 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 1915578 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition
Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou
Abstract:
In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks
Procedia PDF Downloads 6165577 Patterns and Extent of Self-Medication Practice among Adolescents in Selected Public Secondary Schools in IFE Central Local Government Area of Osun State, Nigeria
Authors: Olajumoke A. Ojeleye
Abstract:
The study assessed the patterns and extent of self-medication practice among adolescents in selected public senior secondary schools in Ife Central Local Government Area of Osun State. The objectives of the study were to find out the patterns of self-medication among adolescents, to elucidate whether age or gender has any effect on the self-medication patterns of adolescent, to ascertain to what extent adolescents indulge in self-medication, to examine the sources of drug information of these adolescents and also to examine the sources of these drugs. A cross-sectional design was employed for the study. A self-administered questionnaire tested for validity was used to collect data. Multistage sampling technique was used and 238 adolescents participated in the study. Data collection took two weeks and was analysed using Statistical Package for Social Sciences version 17. Results were presented using descriptive (e.g. frequency counts) and inferential statistics (e.g. chi-square). Results showed that more females (55.9%) than males (44.1%) practiced self-medication. Although the results showed that there is a low prevalence rate (33.6%) of self-medication among adolescents, chemists served as both the source of information on how to use the drug as well as the source of the drugs. Also, adolescents under study will only self-medicate in medical conditions such as malaria or wound/injuries but will prefer to see a doctor for conditions such as abdominal pain, infections or allergic reactions. It was recommended that government officials responsible for regulating and controlling of drugs should be more active in ensuring that safe drugs are made available over the counter and the consumer be given adequate information about the use of drugs and when to consult the doctor.Keywords: adolescents, drugs, patterns, self-medication
Procedia PDF Downloads 2045576 Mapping Interrelationships among Key Sustainability Drivers: A Strategic Framework for Enhanced Entrepreneurial Sustainability among MSME
Authors: Akriti Chandra, Gourav Dwivedi, Seema Sharma, Shivani
Abstract:
This study investigates the adoption of green business (GB) models within a circular economy framework (CEBM) for Micro Small and Medium Enterprise (MSME), given the rising importance of sustainable practices. The research begins by exploring the shift from linear business models towards resource-efficient, sustainable models, emphasizing the benefits of the circular economy. The study's literature review identifies 60 influential factors impacting the shift to green businesses, grouped as internal and external drivers. However, there is a research gap in examining these factors' interrelationships and operationalizing them within MSMEs. To address this gap, the study employs Total Interpretive Structural Modelling (TISM) to establish a hierarchical structure of factors influencing GB and circular economy business model (CEBM) adoption. Findings reveal that factors like green innovation and market competitiveness are particularly impactful. Using Systems Theory, which views organizations as complex adaptive systems, the study contextualizes these drivers within MSMEs, proposing a framework for a sustainable business model adoption. The study concludes with significant implications for policymakers, suggesting that the identified factors and their hierarchical relationships can guide policy formulation for a broader transition to green business practices. This work also invites further research, recommending larger, quantitative studies to empirically validate these factors and explore practical challenges in implementing CEBMs.Keywords: green business (GB), circular economy business model (CEBM), micro small and medium enterprise (MSME), total interpretive structural modelling (TISM), systems theory
Procedia PDF Downloads 75575 Vortices Structure in Internal Laminar and Turbulent Flows
Authors: Farid Gaci, Zoubir Nemouchi
Abstract:
A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent
Procedia PDF Downloads 3365574 Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation
Authors: Sung-Min Kim, Joon-Hong Park, Hyuk Choi
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments.Keywords: anti-splash device, P/V valve, sloshing, CFD
Procedia PDF Downloads 6335573 A Survey of Digital Health Companies: Opportunities and Business Model Challenges
Authors: Iris Xiaohong Quan
Abstract:
The global digital health market reached 175 billion U.S. dollars in 2019, and is expected to grow at about 25% CAGR to over 650 billion USD by 2025. Different terms such as digital health, e-health, mHealth, telehealth have been used in the field, which can sometimes cause confusion. The term digital health was originally introduced to refer specifically to the use of interactive media, tools, platforms, applications, and solutions that are connected to the Internet to address health concerns of providers as well as consumers. While mHealth emphasizes the use of mobile phones in healthcare, telehealth means using technology to remotely deliver clinical health services to patients. According to FDA, “the broad scope of digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine.” Some researchers believe that digital health is nothing else but the cultural transformation healthcare has been going through in the 21st century because of digital health technologies that provide data to both patients and medical professionals. As digital health is burgeoning, but research in the area is still inadequate, our paper aims to clear the definition confusion and provide an overall picture of digital health companies. We further investigate how business models are designed and differentiated in the emerging digital health sector. Both quantitative and qualitative methods are adopted in the research. For the quantitative analysis, our research data came from two databases Crunchbase and CBInsights, which are well-recognized information sources for researchers, entrepreneurs, managers, and investors. We searched a few keywords in the Crunchbase database based on companies’ self-description: digital health, e-health, and telehealth. A search of “digital health” returned 941 unique results, “e-health” returned 167 companies, while “telehealth” 427. We also searched the CBInsights database for similar information. After merging and removing duplicate ones and cleaning up the database, we came up with a list of 1464 companies as digital health companies. A qualitative method will be used to complement the quantitative analysis. We will do an in-depth case analysis of three successful unicorn digital health companies to understand how business models evolve and discuss the challenges faced in this sector. Our research returned some interesting findings. For instance, we found that 86% of the digital health startups were founded in the recent decade since 2010. 75% of the digital health companies have less than 50 employees, and almost 50% with less than 10 employees. This shows that digital health companies are relatively young and small in scale. On the business model analysis, while traditional healthcare businesses emphasize the so-called “3P”—patient, physicians, and payer, digital health companies extend to “5p” by adding patents, which is the result of technology requirements (such as the development of artificial intelligence models), and platform, which is an effective value creation approach to bring the stakeholders together. Our case analysis will detail the 5p framework and contribute to the extant knowledge on business models in the healthcare industry.Keywords: digital health, business models, entrepreneurship opportunities, healthcare
Procedia PDF Downloads 1825572 Theoretical Discussion on the Classification of Risks in Supply Chain Management
Authors: Liane Marcia Freitas Silva, Fernando Augusto Silva Marins, Maria Silene Alexandre Leite
Abstract:
The adoption of a network structure, like in the supply chains, favors the increase of dependence between companies and, by consequence, their vulnerability. Environment disasters, sociopolitical and economical events, and the dynamics of supply chains elevate the uncertainty of their operation, favoring the occurrence of events that can generate break up in the operations and other undesired consequences. Thus, supply chains are exposed to various risks that can influence the profitability of companies involved, and there are several previous studies that have proposed risk classification models in order to categorize the risks and to manage them. The objective of this paper is to analyze and discuss thirty of these risk classification models by means a theoretical survey. The research method adopted for analyzing and discussion includes three phases: The identification of the types of risks proposed in each one of the thirty models, the grouping of them considering equivalent concepts associated to their definitions, and, the analysis of these risks groups, evaluating their similarities and differences. After these analyses, it was possible to conclude that, in fact, there is more than thirty risks types identified in the literature of Supply Chains, but some of them are identical despite of be used distinct terms to characterize them, because different criteria for risk classification are adopted by researchers. In short, it is observed that some types of risks are identified as risk source for supply chains, such as, demand risk, environmental risk and safety risk. On the other hand, other types of risks are identified by the consequences that they can generate for the supply chains, such as, the reputation risk, the asset depreciation risk and the competitive risk. These results are consequence of the disagreements between researchers on risk classification, mainly about what is risk event and about what is the consequence of risk occurrence. An additional study is in developing in order to clarify how the risks can be generated, and which are the characteristics of the components in a Supply Chain that leads to occurrence of risk.Keywords: sisks classification, survey, supply chain management, theoretical discussion
Procedia PDF Downloads 6315571 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame
Authors: Keyvan Ramin
Abstract:
The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve
Procedia PDF Downloads 3775570 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency
Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade
Abstract:
Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency
Procedia PDF Downloads 3025569 Integrating Critical Stylistics and Visual Grammar: A Multimodal Stylistic Approach to the Analysis of Non-Literary Texts
Authors: Shatha Khuzaee
Abstract:
The study develops multimodal stylistic approach to analyse a number of BBC online news articles reporting some key events from the so called ‘Arab Uprisings’. Critical stylistics (CS) and visual grammar (VG) provide insightful arguments to the ways ideology is projected through different verbal and visual modes, yet they are mode specific because they examine how each mode projects its meaning separately and do not attempt to clarify what happens intersemiotically when the two modes co-occur. Therefore, it is the task undertaken in this research to propose multimodal stylistic approach that addresses the issue of ideology construction when the two modes co-occur. Informed by functional grammar and social semiotics, the analysis attempts to integrate three linguistic models developed in critical stylistics, namely, transitivity choices, prioritizing and hypothesizing along with their visual equivalents adopted from visual grammar to investigate the way ideology is constructed, in multimodal text, when text/image participate and interrelate in the process of meaning making on the textual level of analysis. The analysis provides comprehensive theoretical and analytical elaborations on the different points of integration between CS linguistic models and VG equivalents which operate on the textual level of analysis to better account for ideology construction in news as non-literary multimodal texts. It is argued that the analysis well thought out a plan that would remark the first step towards the integration between the well-established linguistic models of critical stylistics and that of visual analysis to analyse multimodal texts on the textual level. Both approaches are compatible to produce multimodal stylistic approach because they intend to analyse text and image depending on whatever textual evidence is available. This supports the analysis maintain the rigor and replicability needed for a stylistic analysis like the one undertaken in this study.Keywords: multimodality, stylistics, visual grammar, social semiotics, functional grammar
Procedia PDF Downloads 2195568 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1285567 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa
Authors: Xiaoci Li, Yonghua Huang, Hui Lin
Abstract:
Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property
Procedia PDF Downloads 2945566 Chitosan Hydrogel Containing Nitric Oxide Donors with Potent Antibacterial Effect
Authors: Milena Trevisan Pelegrino, Bruna De Araujo Lima, Mônica H. M. Do Nascimento, Christiane B. Lombello, Marcelo Brocchi, Amedea B. Seabra
Abstract:
Nitric oxide (NO) is a small molecule involved in a wide range of physiological and pathophysiological processes, including vasodilatation, control of inflammatory pain, wound healing, and antibacterial activities. As NO is a free radical, the design of drugs that generates therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL) - chitosan (CS) hydrogel, in an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial and biocompatibility properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior, and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications, at physiological and skin temperatures. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which correspondents to 1 mmol·L-1 of GSNO). Interesting, the concentration range in which the NO-releasing hydrogel demonstrated antibacterial effect was not found toxic to Vero mammalian cell. Thus, GSNO-PL/CS hydrogel is suitable biomaterial for topical NO delivery applications.Keywords: antimicrobial, chitosan, biocompatibility, S-nitrosothiols
Procedia PDF Downloads 183