Search results for: space structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7654

Search results for: space structures

6154 On the Dwindling Supply of the Observable Cosmic Microwave Background Radiation

Authors: Jia-Chao Wang

Abstract:

The cosmic microwave background radiation (CMB) freed during the recombination era can be considered as a photon source of small duration; a one-time event happened everywhere in the universe simultaneously. If space is divided into concentric shells centered at an observer’s location, one can imagine that the CMB photons originated from the nearby shells would reach and pass the observer first, and those in shells farther away would follow as time goes forward. In the Big Bang model, space expands rapidly in a time-dependent manner as described by the scale factor. This expansion results in an event horizon coincident with one of the shells, and its radius can be calculated using cosmological calculators available online. Using Planck 2015 results, its value during the recombination era at cosmological time t = 0.379 million years (My) is calculated to be Revent = 56.95 million light-years (Mly). The event horizon sets a boundary beyond which the freed CMB photons will never reach the observer. The photons within the event horizon also exhibit a peculiar behavior. Calculated results show that the CMB observed today was freed in a shell located at 41.8 Mly away (inside the boundary set by Revent) at t = 0.379 My. These photons traveled 13.8 billion years (Gy) to reach here. Similarly, the CMB reaching the observer at t = 1, 5, 10, 20, 40, 60, 80, 100 and 120 Gy are calculated to be originated at shells of R = 16.98, 29.96, 37.79, 46.47, 53.66, 55.91, 56.62, 56.85 and 56.92 Mly, respectively. The results show that as time goes by, the R value approaches Revent = 56.95 Mly but never exceeds it, consistent with the earlier statement that beyond Revent the freed CMB photons will never reach the observer. The difference Revert - R can be used as a measure of the remaining observable CMB photons. Its value becomes smaller and smaller as R approaching Revent, indicating a dwindling supply of the observable CMB radiation. In this paper, detailed dwindling effects near the event horizon are analyzed with the help of online cosmological calculators based on the lambda cold dark matter (ΛCDM) model. It is demonstrated in the literature that assuming the CMB to be a blackbody at recombination (about 3000 K), then it will remain so over time under cosmological redshift and homogeneous expansion of space, but with the temperature lowered (2.725 K now). The present result suggests that the observable CMB photon density, besides changing with space expansion, can also be affected by the dwindling supply associated with the event horizon. This raises the question of whether the blackbody of CMB at recombination can remain so over time. Being able to explain the blackbody nature of the observed CMB is an import part of the success of the Big Bang model. The present results cast some doubts on that and suggest that the model may have an additional challenge to deal with.

Keywords: blackbody of CMB, CMB radiation, dwindling supply of CMB, event horizon

Procedia PDF Downloads 122
6153 An Improved Tie Force Method for Progressive Collapse Resistance Design of Precast Concrete Cross Wall Structures

Authors: M. Tohidi, J. Yang, C. Baniotopoulos

Abstract:

Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.

Keywords: cross wall, progressive collapse, ties force method, catenary, analytical

Procedia PDF Downloads 470
6152 Low-Impact Development Strategies Assessment for Urban Design

Authors: Y. S. Lin, H. L. Lin

Abstract:

Climate change and land-use change caused by urban expansion increase the frequency of urban flooding. To mitigate the increase in runoff volume, low-impact development (LID) is a green approach for reducing the area of impervious surface and managing stormwater at the source with decentralized micro-scale control measures. However, the current benefit assessment and practical application of LID in Taiwan is still tending to be development plan in the community and building site scales. As for urban design, site-based moisture-holding capacity has been common index for evaluating LID’s effectiveness of urban design, which ignore the diversity, and complexity of the urban built environments, such as different densities, positive and negative spaces, volumes of building and so on. Such inflexible regulations not only probably make difficulty for most of the developed areas to implement, but also not suitable for every different types of built environments, make little benefits to some types of built environments. Looking toward to enable LID to strength the link with urban design to reduce the runoff in coping urban flooding, the research consider different characteristics of different types of built environments in developing LID strategy. Classify the built environments by doing the cluster analysis based on density measures, such as Ground Space Index (GSI), Floor Space Index (FSI), Floors (L), and Open Space Ratio (OSR), and analyze their impervious surface rates and runoff volumes. Simulate flood situations by using quasi-two-dimensional flood plain flow model, and evaluate the flood mitigation effectiveness of different types of built environments in different low-impact development strategies. The information from the results of the assessment can be more precisely implement in urban design. In addition, it helps to enact regulations of low-Impact development strategies in urban design more suitable for every different type of built environments.

Keywords: low-impact development, urban design, flooding, density measures

Procedia PDF Downloads 336
6151 Influence of Corrugation and Loosely Bonded Interface on the Propagation of Torsional Wave Propagation in a Viscoelastic Layer

Authors: Amrita Das, Abhishek Kumar Singh

Abstract:

The present paper calibrates the efficacy of corrugated and loosely bonded common interface of a viscoelastic layer and a dry sandy Gibson half-space on the propagation of torsional surface wave. Using suitable boundary conditions, the dispersion relation for the concerned problem is deduced in complex form. Numerical computation of the real part of the obtained dispersion relation gives the dispersion curve whereas the imaginary part bestows the damping curves. The use of Whittaker’s function and Bessel’s functions are among the major concerns of the paper. The investigation of the influence of the affecting parameters viz. heterogeneities, sandiness, Biot’s gravity parameter, initial stresses, loosely bonded interface, corrugation and internal friction on the phase velocity as well as damped velocity of torsional wave, through numerical discussion and graphical illustration, is among the major highlights of the current study.

Keywords: corrugation, dry sandy Gibson half-space, loosely bonded interface, torsional wave, viscoelastic layer

Procedia PDF Downloads 327
6150 Construction Port Requirements for Floating Wind Turbines

Authors: Alan Crowle, Philpp Thies

Abstract:

As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.

Keywords: floating wind, port, marine construction, offshore renewables

Procedia PDF Downloads 296
6149 Analytical Approach to Study the Uncertainties Related to the Behavior of Structures Submitted to Differential Settlement

Authors: Elio El Kahi, Michel Khouri, Olivier Deck, Pierre Rahme, Rasool Mehdizadeh

Abstract:

Recent developments in civil engineering create multiple interaction problems between the soil and the structure. One of the major problems is the impact of ground movements on buildings. Consequently, managing risks associated with these movements, requires a determination of the different influencing factors and a specific knowledge of their variability/uncertainty. The main purpose of this research is to study the behavior of structures submitted to differential settlement, in order to assess their vulnerability, taking into consideration the different sources of uncertainties. Analytical approach is applied to investigate on one hand the influence of these uncertainties that are related to the soil, and on the other hand the structure stiffness variation with the presence of openings and the movement transmitted between them as related to the origin and shape of the free-field movement. Results reveal the effect of taking these uncertainties into consideration, and specify the dominant and most significant parameters that control the ground movement associated with the Soil-Structure Interaction (SSI) phenomenon.

Keywords: analytical approach, building, damage, differential settlement, soil-structure interaction, uncertainties

Procedia PDF Downloads 240
6148 Sedimentary Response to Coastal Defense Works in São Vicente Bay, São Paulo

Authors: L. C. Ansanelli, P. Alfredini

Abstract:

The article presents the evaluation of the effectiveness of two groins located at Gonzaguinha and Milionários Beaches, situated on the southeast coast of Brazil. The effectiveness of these coastal defense structures is evaluated in terms of sedimentary dynamics, which is one of the most important environmental processes to be assessed in coastal engineering studies. The applied method is based on the implementation of the Delft3D numerical model system tools. Delft3D-WAVE module was used for waves modelling, Delft3D-FLOW for hydrodynamic modelling and Delft3D-SED for sediment transport modelling. The calibration of the models was carried out in a way that the simulations adequately represent the region studied, evaluating improvements in the model elements with the use of statistical comparisons of similarity between the results and waves, currents and tides data recorded in the study area. Analysis of the maximum wave heights was carried to select the months with higher accumulated energy to implement these conditions in the engineering scenarios. The engineering studies were performed for two scenarios: 1) numerical simulation of the area considering only the two existing groins; 2) conception of breakwaters coupled at the ends of the existing groins, resulting in two “T” shaped structures. The sediment model showed that, for the simulated period, the area is affected by erosive processes and that the existing groins have little effectiveness in defending the coast in question. The implemented T structures showed some effectiveness in protecting the beaches against erosion and provided the recovery of the portion directly covered by it on the Milionários Beach. In order to complement this study, it is suggested the conception of further engineering scenarios that might recover other areas of the studied region.

Keywords: coastal engineering, coastal erosion, Sao Vicente bay, Delft3D, coastal engineering works

Procedia PDF Downloads 129
6147 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 159
6146 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 374
6145 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication

Authors: Farhan A. Alenizi

Abstract:

Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.

Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing

Procedia PDF Downloads 162
6144 Effect of Different Plan Shapes on the Load Carrying Capacity of a Steel Frame under Extreme Loading

Authors: Omid Khandel, Azadeh Parvin

Abstract:

An increase in accidental explosions in recent years has increased the interest on investigating the response and behavior of structures in more details. The present work focused on finite element analysis of multistory steel frame structures with different plan shapes subjected to blast loadings. In order to study the effect of the geometry of the building, three different shapes for the plan of the building were modeled and studied; Rectangular, Square and L shape plans. The nonlinear dynamic analysis was considered in this study. The relocation technique was also used to improve the behavior of structure. The accuracy of the multistory frame model was confirmed with those of the existing study in the literature and they were in good agreement. The effect of span length of the buildings was also considered. Finite element analysis of various scenarios for relocating the plastic hinges and improving the response of the structure was performed. The base shear versus displacement curves were compared to reveal the best possible scenarios to provide recommendations to designers and practitioners.

Keywords: nonlinear dynamic analysis, plastic hinge relocation, Retrofit, SAP2000

Procedia PDF Downloads 283
6143 Jean-Francois Lyotrard's Concept of Different and the Conceptual Problems of Beauty in Philosophy of Contemporary Art

Authors: Sunandapriya Bhikkhu, Shimo Sraman

Abstract:

The main objective of this research is to analytically study the concept of Lyotard’s different that rejects the monopoly criteria and single rule with the incommensurable, which can explain about conceptual problems of beauty in the philosophy of contemporary art. In Lyotard’s idea that basic value judgment of human should be a value like a phrase that is a small unit and an individual such as the aesthetic value that to explain the art world. From the concept of the anti-war artist that rejects the concept of the traditional aesthetic which cannot be able to explain the changing in contemporary society but emphasizes the meaning of individual beauty that is at the beginning of contemporary art today. In the analysis of the problem, the researcher supports the concept of Lyotard’s different that emphasizes the artistic expression which opens the space of perception and beyond the limitations of language process. Art is like phrase or small units that can convey a sense of humanity through the aesthetic value of the individual, not social criteria or universal. The concept of Lyotard’s different awakens and challenge us to the rejection of the single rule that is not open the social space to minorities by not accepting the monopoly criteria.

Keywords: difference, Jean-Francois Lyotard, postmodern, beauty, contemporary art

Procedia PDF Downloads 309
6142 Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space

Authors: Mohammad Farid

Abstract:

In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area.

Keywords: generalized mixed equilibrium problem, fixed-point problem, nonexpansive semigroup, variational inequality problem, iterative algorithms, hybrid extragradient method

Procedia PDF Downloads 476
6141 A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators

Authors: Khuram Shahzad, Omar Usman Khan

Abstract:

Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.

Keywords: quantum comparator, quantum algorithm, space-efficient comparator, comparator

Procedia PDF Downloads 20
6140 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 316
6139 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes

Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush

Abstract:

Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.

Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing

Procedia PDF Downloads 224
6138 The Local Centers' Development of Berlin: Analyzing Different Cultural Influences with Impact on Urban Changes

Authors: Monika Moggert

Abstract:

The aim of the research evaluates the local centers' development of Berlin, the capital of Germany. There are included studies of their potential, considers the possibility of applying different cultural influences and the issue of the current demographic transformation of Europe. The solution utilizes the analysis of historical, cultural, political and sociological changes after 2nd World War; the exploration of historical as well as strategic maps and personal evaluation of the current condition of selected boroughs – Berlin Neuköln, Kreuzberg and Wedding, where more than 30% of the inhabitants have a migration background. The research provides an example of the likely development of centers in urban agglomerations. It examines the issue of local centers with an inhumane scale in contrast to small-scale centering sites, mostly located in areas largely with immigrant communities. The research results enable a better understanding of the influence of different cultures and lifestyles on the appearance of the city and its local centers. We can use it as an inspiration for the new design of the Berlin centers. The results will be used for further research on urban space development in the cultural environment of Europe and the Middle East as well.

Keywords: Berlin, cultural environment, life in the city, public and urban space, the urban city centers development, town and society

Procedia PDF Downloads 199
6137 The Eathquake Discourse as a Strategy of an Urban Renewal: A Case Study into the Karapınar Valley Regeneration Project in Eskişehir, Turkey

Authors: Cansu Civelek

Abstract:

The flexible and uneven character of neoliberalism has provided adaptation of urban strategies into the constantly changing circumstances in order to renew and reproduce the neoliberal accumulation model. Instrumentalization of catastrophic events to this end has been one of those global urban strategies. Regarding Turkey, exploitation of natural disasters has been the latest tactic of the Justice and Development Party (JDP) government to achieve radical economic goals. ‘Unhealthy’ and ‘risky’ structures of squatter settlements have often been articulated while the regenerations, expropriations, and exclusions have been sugarcoated through the discourses of ‘reintegrating the shanty zones into the cities’, ‘supplying healthy housing’, and ‘win-win’ character of the projects. Being the first regeneration project of Eskişehir, the Karapınar Regeneration Project has been initiated in 2011 by the partnership of the Odunpazarı Municipality of the JDP and the Mass Housing Organization. Discourses around the forthcoming disasters, ‘risky structures’ of the squatters, and the importance of the ‘security of life and property’ have been utilized, even though the zone is situated on a geotechnically stable area. Yet, many of the locals are worried about the payments while some have already decided to move elsewhere at the outskirts of the city.

Keywords: neoliberal urbanism, urban regeneration, illegal settlements, discourses

Procedia PDF Downloads 449
6136 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 197
6135 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile

Authors: Monika Kamocka, Radoslaw Mania

Abstract:

The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.

Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method

Procedia PDF Downloads 195
6134 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor

Authors: Abdelsalam A. Ahmed

Abstract:

Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.

Keywords: permanent magnet synchronous motor, model-based predictive control, DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP

Procedia PDF Downloads 647
6133 Functional Nanomaterials for Environmental Applications

Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine

Abstract:

The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.

Keywords: hybrid materials, porous silicon, peptide, metal detection

Procedia PDF Downloads 503
6132 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: contrast enhacement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia PDF Downloads 380
6131 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient

Procedia PDF Downloads 394
6130 Comparative Comparison (Cost-Benefit Analysis) of the Costs Caused by the Earthquake and Costs of Retrofitting Buildings in Iran

Authors: Iman Shabanzadeh

Abstract:

Earthquake is known as one of the most frequent natural hazards in Iran. Therefore, policy making to improve the strengthening of structures is one of the requirements of the approach to prevent and reduce the risk of the destructive effects of earthquakes. In order to choose the optimal policy in the face of earthquakes, this article tries to examine the cost of financial damages caused by earthquakes in the building sector and compare it with the costs of retrofitting. In this study, the results of adopting the scenario of "action after the earthquake" and the policy scenario of "strengthening structures before the earthquake" have been collected, calculated and finally analyzed by putting them together. Methodologically, data received from governorates and building retrofitting engineering companies have been used. The scope of the study is earthquakes occurred in the geographical area of Iran, and among them, eight earthquakes have been specifically studied: Miane, Ahar and Haris, Qator, Momor, Khorasan, Damghan and Shahroud, Gohran, Hormozgan and Ezgole. The main basis of the calculations is the data obtained from retrofitting companies regarding the cost per square meter of building retrofitting and the data of the governorate regarding the power of earthquake destruction, the realized costs for the reconstruction and construction of residential units. The estimated costs have been converted to the value of 2021 using the time value of money method to enable comparison and aggregation. The cost-benefit comparison of the two policies of action after the earthquake and retrofitting before the earthquake in the eight earthquakes investigated shows that the country has suffered five thousand billion Tomans of losses due to the lack of retrofitting of buildings against earthquakes. Based on the data of the Budget Law's of Iran, this figure was approximately twice the budget of the Ministry of Roads and Urban Development and five times the budget of the Islamic Revolution Housing Foundation in 2021. The results show that the policy of retrofitting structures before an earthquake is significantly more optimal than the competing scenario. The comparison of the two policy scenarios examined in this study shows that the policy of retrofitting buildings before an earthquake, on the one hand, prevents huge losses, and on the other hand, by increasing the number of earthquake-resistant houses, it reduces the amount of earthquake destruction. In addition to other positive effects of retrofitting, such as the reduction of mortality due to earthquake resistance of buildings and the reduction of other economic and social effects caused by earthquakes. These are things that can prove the cost-effectiveness of the policy scenario of "strengthening structures before earthquakes" in Iran.

Keywords: disaster economy, earthquake economy, cost-benefit analysis, resilience

Procedia PDF Downloads 65
6129 Influence of Bio-Based Admixture on Compressive Strength of Concrete for Columns

Authors: K. Raza, S. Gul, M. Ali

Abstract:

Concrete is a fundamental building material, extensively utilized by the construction industry. Problems related to the strength of concrete is an immense issue for the sustainability of concrete structures. Concrete mostly loses its strength due to the cracks produced in it by shrinkage or hydration process. This study aims to enhance the strength and service life of the concrete structures by incorporating bio-based admixture in the concrete. By the injection of bio-based admixture (BBA) in concrete, it will self-heal the cracks by producing calcium carbonate. Minimization of cracks will compact the microstructure of the concrete, due to which strength will increase. For this study, Bacillus subtilis will be used as a bio-based admixture (BBA) in concrete. Calcium lactate up to 1.5% will be used as the food source for the Bacillus subtilis in concrete. Two formulations containing 0 and 5% of Bacillus subtilis by weight of cement, will be used for the casting of concrete specimens. Direct mixing method will be adopted for the usage of bio-based admixture in concrete. Compressive strength test will be carried out after 28 days of curing. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) will be performed for the examination of micro-structure of concrete. Results will be drawn by comparing the test results of 0 and 5% the formulations. It will be recommended to use to bio-based admixture (BBA) in concrete for columns because of the satisfactory increase in the compressive strength of concrete.

Keywords: bio-based admixture, Bacillus subtilis, calcium lactate, compressive strength

Procedia PDF Downloads 229
6128 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures

Authors: A. T. Al-Isawi, P. E. F. Collins

Abstract:

The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.

Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction

Procedia PDF Downloads 124
6127 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Wei Feilong

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment

Procedia PDF Downloads 268
6126 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 124
6125 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate

Authors: Jenan Abu Qadourah

Abstract:

With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.

Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan

Procedia PDF Downloads 86