Search results for: multiple distribution supply chain network
14691 Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads
Authors: Hamid Ahmadi, Amirreza Ghaffari
Abstract:
Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.Keywords: tubular X-joint, degree of bending (DoB), probability density function (PDF), Kolmogorov-Smirnov goodness-of-fit test
Procedia PDF Downloads 71914690 Effect of Acids with Different Chain Lengths Modified by Methane Sulfonic Acid and Temperature on the Properties of Thermoplastic Starch/Glycerin Blends
Authors: Chi-Yuan Huang, Mei-Chuan Kuo, Ching-Yi Hsiao
Abstract:
In this study, acids with various chain lengths (C6, C8, C10 and C12) modified by methane sulfonic acid (MSA) and temperature were used to modify tapioca starch (TPS), then the glycerol (GA) were added into modified starch, to prepare new blends. The mechanical properties, thermal properties and physical properties of blends were studied. This investigation was divided into two parts. First, the biodegradable materials were used such as starch and glycerol with hexanedioic acid (HA), suberic acid (SBA), sebacic acid (SA), decanedicarboxylic acid (DA) manufacturing with different temperatures (90, 110 and 130 °C). And then, the solution was added into modified starch to prepare the blends by using single-screw extruder. The FT-IR patterns indicated that the characteristic peak of C=O in ester was observed at 1730 cm-1. It is proved that different chain length acids (C6, C8, C10 and C12) reacted with glycerol by esterification and these are used to plasticize blends during extrusion. In addition, the blends would improve the hydrolysis and thermal stability. The water contact angle increased from 43.0° to 64.0°. Second, the HA (110 °C), SBA (110 °C), SA (110 °C), and DA blends (130 °C) were used in study, because they possessed good mechanical properties, water resistances and thermal stability. On the other hand, the various contents (0, 0.005, 0.010, 0.020 g) of MSA were also used to modify the mechanical properties of blends. We observed that the blends were added to MSA, and then the FT-IR patterns indicated that the C=O ester appeared at 1730 cm-1. For this reason, the hydrophobic blends were produced. The water contact angle of the MSA blends increased from 55.0° to 71.0°. Although break elongation of the MSA blends reduced from the original 220% to 128%, the stress increased from 2.5 MPa to 5.1 MPa. Therefore, the optimal composition of blends was the DA blend (130 °C) with adding of MSA (0.005 g).Keywords: chain length acids, methane sulfonic acid, Tapioca starch (TPS), tensile stress
Procedia PDF Downloads 24914689 Exploring Deep Neural Network Compression: An Overview
Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart
Abstract:
The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition
Procedia PDF Downloads 4314688 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks
Authors: Nicholas Aerne, John P. Parmigiani
Abstract:
There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply
Procedia PDF Downloads 20414687 Pricing and Economic Benefits of Commercial Insurance Incorporated into Home-based Hospice Care
Authors: Lie-Fen Lin, Tzu-Hsuan Lin, Ching-Heng Lin
Abstract:
Hospice care for terminally ill patients provides not only a better quality of life but also cost-saving benefits. However, the utilization of home-based hospice care (HBH care) remains low even for countries covered by National Health Insurance (NHI) programs in Taiwan. In the current commercial insurance policy, only hospital-based hospice benefits were covered. It may have an influence on the insureds chosen to receive end-of-life care in a hospitalized manner. Thus, how to propose a feasible method to advocate HBH care utilization rate of public health policies is an important issue. A total of 130,219 cancer decedents in the year 2011-2013 from the National Health Insurance Research Database (NHIRD) in Taiwan were included in this study. By adding a day volume pays benefits of HBH care as a commercial insurance rider, will provide alternative benefits for the insureds. A multiple-state Markov chain model was incorporated to estimate the transition intensities of patients in different states at the end of their lives (Non-hospice, HBH, hospital-based hospice), and the premiums were estimated. HBH care insurance benefits provide financial support and reduce the burden of care for patients. The rate-making of this product is very sensitive while the utilization rate is rising, especially for high ages. The proposed HBH care insurance is a feasible way to reduce the financial burden, enhance the care quality and family satisfaction of insureds. Meanwhile, insurance companies can participate in advocating a good medical policy to enhance the social image. In addition, the medical costs of NHI can reduce effectively.Keywords: home-based hospice care, commercial insurance, Markov chain model, the day volume pays
Procedia PDF Downloads 21314686 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 13114685 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 39714684 Aggregate Fluctuations and the Global Network of Input-Output Linkages
Authors: Alexander Hempfing
Abstract:
The desire to understand business cycle fluctuations, trade interdependencies and co-movement has a long tradition in economic thinking. From input-output economics to business cycle theory, researchers aimed to find appropriate answers from an empirical as well as a theoretical perspective. This paper empirically analyses how the production structure of the global economy and several states developed over time, what their distributional properties are and if there are network specific metrics that allow identifying structurally important nodes, on a global, national and sectoral scale. For this, the World Input-Output Database was used, and different statistical methods were applied. Empirical evidence is provided that the importance of the Eastern hemisphere in the global production network has increased significantly between 2000 and 2014. Moreover, it was possible to show that the sectoral eigenvector centrality indices on a global level are power-law distributed, providing evidence that specific national sectors exist which are more critical to the world economy than others while serving as a hub within the global production network. However, further findings suggest, that global production cannot be characterized as a scale-free network.Keywords: economic integration, industrial organization, input-output economics, network economics, production networks
Procedia PDF Downloads 27614683 A Quantitative Study of the Evolution of Open Source Software Communities
Authors: M. R. Martinez-Torres, S. L. Toral, M. Olmedilla
Abstract:
Typically, virtual communities exhibit the well-known phenomenon of participation inequality, which means that only a small percentage of users is responsible of the majority of contributions. However, the sustainability of the community requires that the group of active users must be continuously nurtured with new users that gain expertise through a participation process. This paper analyzes the time evolution of Open Source Software (OSS) communities, considering users that join/abandon the community over time and several topological properties of the network when modeled as a social network. More specifically, the paper analyzes the role of those users rejoining the community and their influence in the global characteristics of the network.Keywords: open source communities, social network Analysis, time series, virtual communities
Procedia PDF Downloads 52314682 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks
Authors: Younghyun Jeon, Seungjoo Maeng
Abstract:
In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power
Procedia PDF Downloads 39814681 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 56314680 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 16514679 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 7814678 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme
Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi
Abstract:
In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)
Procedia PDF Downloads 52114677 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner
Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.Keywords: Bayesian network, IoT, learning, situation -awareness, smart home
Procedia PDF Downloads 52314676 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems
Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance
Procedia PDF Downloads 33314675 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach
Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou
Abstract:
In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering
Procedia PDF Downloads 10314674 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University
Authors: Wipada Chaiwchan
Abstract:
This research aims to study behaviors in using social networks of Corporate personnel of Suan Sunandha Rajabhat University. The sample used in the study were two groups: 1) Academic Officer 70 persons and 2) Operation Officer 143 persons were used in this study. The tools in this research consisted of questionnaire which the data were analyzed by using percentage, average (X) and Standard deviation (S.D.) and Independent Sample T-Test to test the difference between the mean values obtained from two independent samples, and One-way anova to analysis of variance, and Multiple comparisons to test that the average pair of different methods by Fisher’s Least Significant Different (LSD). The study result found that the most of corporate personnel have purpose in using social network to information awareness aspect was knowledge and online conference with social media. By using the average more than 3 hours per day in everyday. Using time in working in one day and there are computers connected to the Internet at home, by using the communication in the operational processes. Behaviors using social networks in relation to gender, age, job title, department, and type of personnel. Hypothesis testing, and analysis of variance for the effects of this analysis is divided into three aspects: The use of online social networks, the attitude of the users and the security analysis has found that Corporate Personnel of Suan Sunandha Rajabhat University. Overall and specifically at the high level, and considering each item found all at a high level. By sorting of the social network (X=3.22), The attitude of the users (X= 3.06) and the security (X= 3.11). The overall behaviors using of each side (X=3.11).Keywords: social network, behaviors, social media, computer information systems
Procedia PDF Downloads 39414673 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 14714672 Preparation and Evaluation of Multiple Unit Tablets of Aceclofenac
Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan
Abstract:
The present research is aimed at fabrication of multiple-unit controlled-release tablet formulation of aceclofenac by employing acrylic polymers as the release controlling excipients for drug multi-particulates to achieve the desired objectives of maintaining the same controlled release characteristics as that prior to their compression into tablet. Various manufacturers are successfully manufacturing and marketing aceclofenac controlled release tablet by applying directly coating materials on the tablet. The basic idea behind development of such formulations was to employ aqueous acrylics polymers dispersion as an alternative to the existing approaches, wherein the forces of compression may cause twist of drug pellets, but do not have adverse effects on the drug release properties. Thus, the study was undertaken to illustrate manufacturing of controlled release aceclofenac multiple-unit tablet formulation.Keywords: aceclofenac, multiple-unit tablets, acrylic polymers, controlled-release
Procedia PDF Downloads 44214671 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 15714670 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 6214669 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas
Authors: Warda Nasir, M. N. S. Qureshi
Abstract:
Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas
Procedia PDF Downloads 31414668 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition
Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou
Abstract:
In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks
Procedia PDF Downloads 61814667 A Linearly Scalable Family of Swapped Networks
Authors: Richard Draper
Abstract:
A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology
Procedia PDF Downloads 12114666 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 7914665 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants
Authors: Ramanpreet Kaur, Upasana Sharma
Abstract:
The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique
Procedia PDF Downloads 10314664 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers
Authors: Lenka Matulova
Abstract:
Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties
Procedia PDF Downloads 24114663 The Role of the State Budget: An Evaluation of Public Expenditures and Taxes in Turkey
Authors: Erdal Eroğlu, Özhan Çetinkaya
Abstract:
The purpose of this paper is to show how state plays a regulatory role in the relations of distribution by analyzing tax and expenditure in Turkey. This paper has two main arguments. First, state intervenes in economic and social life via budget policies and steers the relations of distribution within the scope of the reproduction of the capital accumulation and legitimacy. Secondly, a great amount of public expenditure benefits capital owners while state gains its tax income mainly from low and middle income groups.Keywords: distribution, public expenditure, state budget, taxes
Procedia PDF Downloads 53114662 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 50