Search results for: contact stress
4108 Investigation of the Drying Times of Blood under Different Environmental Conditions and on Different Fabrics and the Transfer of Blood at Different Times of the Drying Process
Authors: Peter Parkinson
Abstract:
The research investigates the effects of temperature, humidity, wind speed, and fabric composition on the drying times of blood and assesses the degree of blood transfer that can occur during the drying process. An assortment of fabrics, of different composition and thicknesses, were collected and stained using two blood volumes and exposed to varying environmental conditions. The conclusion reached was that temperature, humidity, wind speed, and fabric thickness do have an effect on drying times. An increase in temperature and wind speed results in a decrease in drying times while an increase in fabric thickness and humidity extended the drying times of blood under similar conditions. Transfer experimentation utilized three donor fabrics, 100% white cotton, 100% acrylic, and 100% cotton denim, which were bloodstained using two blood volumes. The fabrics were subjected to both full and low/light force contact from the donor fabrics onto the recipient fabric, under different environmental conditions. Transfer times onto the 100% white cotton (recipient fabric) from all donor fabrics were shorter than the drying times observed. The intensities of the bloodstains decreased from high to low with time during the drying process. The degree of transfer at high, medium, and low intensities varied significantly between different materials and is dependent on the environmental conditions, fabric compositions, blood volumes, the type of contact (full or light force), and the drying times observed for the respective donor fabrics. These factors should be considered collectively and conservatively when assessing the time frame of secondary transfer in casework.Keywords: blood, drying time, blood stain transfer, different environmental conditions, fabrics
Procedia PDF Downloads 1534107 Mechanical Environment of the Aortic Valve and Mechanobiology
Authors: Rania Abdulkareem Aboubakr Mahdaly Ammar
Abstract:
The aortic valve (AV) is a complex mechanical environment that includes flexure, tension, pressure and shear stress forces to blood flow during cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have explained that pathological states such as hypertension and congenital defects like bicuspid AV ( BAV ) can potentially alter the AV’s mechanical environment, triggering a cascade of remodeling, inflammation and calcification activities in AV tissue. Changes in mechanical environments are first sent by the endothelium that induces changes in the extracellular matrix, and triggers cell differentiation and activation. However, the molecular mechanism of this process is not very well understood. Understanding these mechanisms is critical for the development of effective medical based therapies. Recently, there have been some interesting studies on characterizing the hemodynamics associated with AV, especially in pathologies like BAV, using different experimental and numerical methods. Here, we review the current knowledge of the local AV mechanical environment and its effect on valve biology, focusing on in vitro and ex vivo approaches.Keywords: aortic valve mechanobiology, bicuspid calcification, pressure stretch, shear stress
Procedia PDF Downloads 3634106 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System
Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia
Abstract:
This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control
Procedia PDF Downloads 2864105 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles
Authors: Jafar Razmi
Abstract:
Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains
Procedia PDF Downloads 2384104 The Effect of Environmental Enrichment on Anxiety and Stress Hormone in Maternally Separated Male Rats
Authors: Özge Selin Çevik, Leyla Şahin, Gülhan Örekeci Temel
Abstract:
The early postnatal period is critical for the development of cognitive and emotional functions. Maternal separation is a detrimental postnatal influence, whereas environmental enrichment is a therapeutic and protective agent. It is unclear if long-term environmental enrichment can compensate for the effects of maternal separation stress on anxiety behavior. This study was designed to examine how environmental enrichment affects anxiety levels and corticosterone levels in maternally separated rats. There are six main groups in this study: control (C), maternal separation+standard cage (MS), maternal separation+enriched environment (MSE), enriched environment (E), the maternal separation that decapitated at postnatal (PN) 21 (MS21), and standard cage that decapitated at PN21 (STD21). The maternal separation procedure consisted of PN for 21 days (between 09:00 a.m and 12:00 a.m). Enriched (E, MSE) or standard cage environment rats (MS, C) spent PN (22-55) days in either enriched cages or standard cages. Anxiety and locomotor activity were examined with the open field and elevated plus-maze test. Blood corticosterone level was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. Results showed that maternal separation (MS) increased locomotor activity and anxiety. An enriched environment (E) did not change the locomotor activity. MSE group’s anxiety and locomotor activity did not change. Corticosterone levels increased in the maternal separation group that decapitated at the PN 21 days. Maternal separation increases anxiety. Environmental enrichment alone was insufficient to cause alterations in the anxiety level. In addition, environmental enrichment did not ameliorate the anxiety level in maternally separated rats. However, environmental enrichment decreased the locomotor activity in the maternally separated rats.Keywords: maternal separation, environment enrichment, stress, hippocampus, anxiety, memory, rat
Procedia PDF Downloads 894103 Wettability Properties of Pineapple Leaf Fibers and Banana Pseudostem Fibers Treated by Cold Plasma
Authors: Tatiana Franco, Hugo A. Estupinan
Abstract:
Banana pseudostem fiber (BPF) and pineapple leaf fiber (PLF) for their excellent mechanical properties and biodegradability characteristics arouse interest in different areas of research. F In tropical regions, where the banana pseudostem and the pineapple leaf are transformed into hard-to-handle solid waste, they can be low-cost raw material and environmentally sustainable in research for composite materials. In terms of functionality of this type of fiber, an open structure would allow the adsorption and retention of organic, inorganic and metallic species. In general, natural fibers have closed structures on their surface with intricate internal arrangements that can be used for the solution of environmental problems and other technological uses, however it is not possible to access their internal structure and sublayers, exposing the fibers in the natural state. An alternative method to chemical and enzymatic treatment are the processes with the plasma treatments, which are known to be clean, economical and controlled. In this type of treatment, a gas contained in a reactor in the form of plasma acts on the fiber generating changes in its structure, morphology and topography. This work compares the effects on fibers of PLF and BPF treated with cold argon plasma, alternating time and current. These fibers are grown in the regions of Antioquia-Colombia. The morphological, compositional and wettability properties of the fibers were analyzed by Raman microscopy, contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy analysis (AFM). The treatment with cold plasma on PLF and BPF allowed increasing its wettability, the topography and the microstructural relationship between lignin and cellulose.Keywords: cold plasma, contact angle, natural fibers, Raman, SEM, wettability
Procedia PDF Downloads 1554102 Deflection Effect on Mirror for Space Applications
Authors: Maamar Fatouma
Abstract:
Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria
Procedia PDF Downloads 854101 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China
Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan
Abstract:
The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure
Procedia PDF Downloads 4724100 The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere
Authors: Dawid Przystupski, Agata Gorska, Paulina Rozborska, Weronika Bartosik, Olga Michel, Joanna Rossowska, Anna Szewczyk, Malgorzata Drag-Zalesinska, Jedrzej Gorski, Julita Kulbacka
Abstract:
Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature.Keywords: antioxidants, stratosphere, balloon flight, oxidative stress, cell death, radiation
Procedia PDF Downloads 1364099 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties
Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula
Abstract:
The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings
Procedia PDF Downloads 1064098 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon
Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi
Abstract:
Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.Keywords: ethephon, DNA damage, γH2AX, oxidative stress
Procedia PDF Downloads 3074097 Alternative Splicing of an Arabidopsis Gene, At2g24600, Encoding Ankyrin-Repeat Protein
Authors: H. Sakamoto, S. Kurosawa, M. Suzuki, S. Oguri
Abstract:
In Arabidopsis, several genes encoding proteins with ankyrin repeats and trans-membrane domains (AtANKTM) have been identified as mediators of biotic and abiotic stress responses. It has been known that the expression of an AtANKTM gene, At2g24600, is induced in response to abiotic stress and that there are four splicing variants derived from this locus. In this study, by RT-PCR and sequencing analysis, an unknown splicing variant of the At2g24600 transcript was identified. Based on differences in the predicted amino acid sequences, the five splicing variants are divided into three groups. The three predicted proteins are highly homologous, yet have different numbers of ankyrin repeats and trans-membrane domains. It is generally considered that ankyrin repeats mediate protein-protein interaction and that the number of trans-membrane domains affects membrane topology of proteins. The protein variants derived from the At2g24600 locus may have different molecular functions each other.Keywords: alternative splicing, ankyrin repeats, trans-membrane domains, arabidopsis
Procedia PDF Downloads 3724096 Glycine Betaine Affects Antioxidant Response and Lipid Peroxidation in Wheat Genotypes under Water-Deficit Conditions
Authors: S. K. Thind, Neha Gupta
Abstract:
Glycine betaine (N, N’, N’’– trimethyl glycine), (GB) as aqueous solution (100 mM) containing 0.1% TWEEN-20 (Ploythylene glycol sorbitan monolaurate) was sprayed on selected nineteen wheat genotypes at maximum tillering and anthesis stages. Water-deficit conditions resulted in lipid peroxidation. GB applications reduced lipid peroxidation in all wheat genotypes at both the stages. Catalase (CAT) activity was recorded more in control than under stressed conditions in selected wheat genotypes at both the stages; GB had no effect. The ascorbic acid content in leaves of selected genotypes increased under water deficit. A genotypic variability in Ascorbate peroxidase (APx) activity was recorded and GB treatment decreased it. Superoxide dismutase (SOD) activity was increased significantly under water-deficit at both stages in all genotypes. In present study, prolonged water-deficit conditions caused CAT deficiency/suppression which was compensated by APX and SOD; and GB exogenous application mitigated negative effect of water-deficit stress on lipid peroxidation.Keywords: glycine-betaine, lipid peroxidation, ROS, water deficit stress
Procedia PDF Downloads 4484095 Lifetime Assessment for Test Strips of POCT Device through Accelerated Degradation Test
Authors: Jinyoung Choi, Sunmook Lee
Abstract:
In general, single parameter, i.e. temperature, as an accelerating parameter is used to assess the accelerated stability of Point-of-Care Testing (POCT) diagnostic devices. However, humidity also plays an important role in deteriorating the strip performance since major components of test strips are proteins such as enzymes. 4 different Temp./Humi. Conditions were used to assess the lifetime of strips. Degradation of test strips were studied through the accelerated stability test and the lifetime was assessed using commercial POCT products. The life distribution of strips, which were obtained by monitoring the failure time of test strip under each stress condition, revealed that the weibull distribution was the most proper distribution describing the life distribution of strips used in the present study. Equal shape parameters were calculated to be 0.9395 and 0.9132 for low and high concentrations, respectively. The lifetime prediction was made by adopting Peck Eq. Model for Stress-Life relationship, and the B10 life was calculated to be 70.09 and 46.65 hrs for low and high concentrations, respectively.Keywords: accelerated degradation, diagnostic device, lifetime assessment, POCT
Procedia PDF Downloads 4144094 An Evaluation Method of Accelerated Storage Life Test for Typical Mechanical and Electronic Products
Authors: Jinyong Yao, Hongzhi Li, Chao Du, Jiao Li
Abstract:
Reliability of long-term storage products is related to the availability of the whole system, and the evaluation of storage life is of great necessity. These products are usually highly reliable and little failure information can be collected. In this paper, an analytical method based on data from accelerated storage life test is proposed to evaluate the reliability index of the long-term storage products. Firstly, singularities are eliminated by data normalization and residual analysis. Secondly, with the pre-processed data, the degradation path model is built to obtain the pseudo life values. Then by life distribution hypothesis, we can get the estimator of parameters in high stress levels and verify failure mechanisms consistency. Finally, the life distribution under the normal stress level is extrapolated via the acceleration model and evaluation of the true average life available. An application example with the camera stabilization device is provided to illustrate the methodology we proposed.Keywords: accelerated storage life test, failure mechanisms consistency, life distribution, reliability
Procedia PDF Downloads 3874093 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation
Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner
Abstract:
A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone
Procedia PDF Downloads 3514092 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.
Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis
Abstract:
Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress
Procedia PDF Downloads 2554091 A Cognitive Behavioural Therapy (CBT) Intervention Programme for Excessive Internet Use among Young Adults
Authors: Ke Guek Nee, Wong Siew Fan, Nigel V. Marsh
Abstract:
Excessive use of the Internet has become a cause for concern in many countries, including Malaysia. Such behaviour is reported to be more prevalent amongst young adults who are reported to be spending large amount of time on the Internet. The present study has three objectives. First one is designing a manual-based Cognitive Behavioural Therapy (CBT) programme to reduce problematic Internet use among young adults in Malaysia. Second one is examining the effectiveness of a manual-based CBT programme at the pilot study stage. Thirdly, the programme focuses on reducing the level of stress and anxiety in problematic Internet users. We adopted CBT with single subject experimental design method. A total of six participants completed the entire program. They were asked to report their daily Internet use and software was installed on their devices to record actual use. The data collection involved three time frame measurements: T1 (baseline), T2 (immediately during the last session of the intervention sessions), and T3 (follow-up). Three scales were used to measure the effectiveness of the program: Depression, Anxiety, Stress Scales (DASS), Social Interaction Anxiety Scale (SIAS), and Problematic Internet Use Questionnaire (PIUQ). The results revealed that the intervention programme has significantly improved two dimensions of problematic Internet use which were obsession and control disorder. The participants’ mental health also showed a deduction in means scores for depression, anxiety and stress with depression showing the greatest improvement after the intervention programme. The participants’ social anxiety showed a slight deduction in means scores. We concluded that the intervention programme designed was effective. However, its limitations need to be addressed in future research.Keywords: excessive internet use, cognitive behavioral thearapy (CBT), psychological well-being, young adults
Procedia PDF Downloads 4514090 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage
Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish
Abstract:
In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.Keywords: automobile, clutch, friction, fork
Procedia PDF Downloads 1224089 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc
Authors: Minto Rattan, Tania Bose, Neeraj Chamoli
Abstract:
The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: creep, isotropic, steady-state, thermal gradient
Procedia PDF Downloads 2674088 Understanding the Thermal Resistance of Active Dry Yeast by Differential Scanning Calorimetry Approach
Authors: Pauline Ribert, Gaelle Roudaut, Sebastien Dupont, Laurent Beney
Abstract:
Yeasts, anhydrobiotic organisms, can survive extreme water disturbances, thanks to the prolonged and reversible suspension of their cellular activity as well as the establishment of a defense arsenal. This property is exploited by many industrialists. One of the protection systems implemented by yeast is the vitrification of its cytoplasm by trehalose. The thermal resistance of dry yeasts is a crucial parameter for their use. However, studies on the thermal resistance of dry yeasts are often based on yeasts produced in laboratory conditions with non-optimal drying processes. We, therefore, propose a study on the thermal resistance of industrial dry yeasts in relation to their thermophysical properties. Heat stress was applied at three temperatures (50, 75, and 100°C) for 10, 30, or 60-minute treatments. The survival of yeasts to these treatments was estimated, and their thermophysical properties were studied by differential scanning calorimetry. The industrial dry yeasts resisted 60 minutes at 50°C and 75°C and 10 minutes at a temperature close to 100°C. At 100°C, yeast was above their glass transition temperature. Industrial dry yeasts are therefore capable of withstanding high thermal stress if maintained in a specific thermophysical state.Keywords: dry yeast, glass transition, thermal resistance, vitrification
Procedia PDF Downloads 1484087 Theoretical Stress-Strain Model for Confined Concrete by Rectangular Reinforcement
Authors: Mizam Dogan, Hande Gökdemir
Abstract:
In reinforced concrete elements, reinforcement steel bars are placed in concrete both longitudinal and lateral directions. The lateral reinforcement (called as confinement) which is used for confining circular RC elements is in a spiral shape. If the cross section of RC element is rectangular, stirrups should be rectangular too. At very high compressive stresses concrete will reach its limit strain value and therefore concrete outside the lateral reinforcement, which is not confined, will crush and start to spell. At this stage, concrete core of the RC element tries to expand laterally as a reason of high Poisson’s ratio value of concrete. Such a deformation is prevented by the lateral reinforcement which applies lateral passive pressure on concrete. At very high compressive stresses, the strength of reinforced column member rises to four times σ 2. This increase in strength of member is related to the properties of rectangular stirrups. In this paper, effect of stirrup step spacing to column behavior is calculated and presented confined concrete model is proved by numerical solutions.Keywords: confined concrete, concrete column, stress-strain, stirrup, solid, frame
Procedia PDF Downloads 4494086 Hypothesis of a Holistic Treatment of Cancer: Crab Method
Authors: Devasis Ghosh
Abstract:
The main hindrance to total cure of cancer is a) the failure to control continued production of cancer cells, b) its sustenance and c) its metastasis. This review study has tried to address this issue of total cancer cure in a more innovative way. A 10-pronged “CRAB METHOD”, a novel holistic scientific approach of Cancer treatment has been hypothesized in this paper. Apart from available Chemotherapy, Radiotherapy and Oncosurgery, (which shall not be discussed here), seven other points of interference and treatment has been suggested, i.e. 1. Efficient stress management. 2. Dampening of ATF3 expression. 3. Selective inhibition of Platelet Activity. 4. Modulation of serotonin production, metabolism and 5HT receptor antagonism. 5. Auxin, its anti-proliferative potential and its modulation. 6. Melatonin supplementation because of its oncostatic properties. 7. HDAC Inhibitors especially valproic acid use due to its apoptotic role in many cancers. If all the above stated seven steps are thoroughly taken care of at the time of initial diagnosis of cancer along with the available treatment modalities of Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the morbidity and mortality rate of cancer may be greatly reduced.Keywords: ATF3 dampening, auxin modulation, cancer, platelet activation, serotonin, stress, valproic acid
Procedia PDF Downloads 2694085 Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings
Authors: Sayuri Inoue, Naohiro Nakamura, Tsubasa Hamada
Abstract:
The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined.Keywords: buildings, seismic design, allowable stress design, time history response analysis, Japanese seismic code
Procedia PDF Downloads 1534084 Hepatoxicity induced Glyphosate-Based Herbicide Baron in albino rats
Authors: Manal E. A Elhalwagy, Nadia Amin Abdulmajeed, Hanan S. Alnahdi, Enas N. Danial
Abstract:
Baron is herbicide includes (48% glyphosate) widely used in Egypt. The present study assesses the cytotoxic and genotoxic effect of baron on rats liver. Two groups of rats were treated orally with 1/10 LD 50, (275.49 mg kg -1) and 1/40 LD 50, (68.86 mg kg-1) glyphosate for 28 days compared with control group. Serum and liver tissues were taken at 14 and 28 days of treatment. An inhibition in Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were recorded at both treatment periods and reduction in total serum protein (TP) and albumin (ALB). However, non-significant changes in serum acetylcholinesterase (AChE). Elevation in oxidative stress biomarker malondyaldehyde (MDA) and the decline in detoxification biomarker total reduced glutathione (GSH), Glutathione S-transferase (GST) and superoxide dismutase (SOD) in liver tissues led to increase in percentage of DNA damage. Destruction in liver tissue architecture was observed . Although, Baron was classified in the safe category pesticides repeated exposure to small doses has great danger effect.Keywords: glyphosate, liver toxicity, oxidative stress, DNA damage, commet assay
Procedia PDF Downloads 3814083 Survival and Retention of the Probiotic Properties of Bacillus sp. Strains under Marine Stress Starvation Conditions and Their Potential Use as a Probiotic for Aquaculture Objectives
Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf
Abstract:
Aquaculture is the world’s fastest growing food-production sector. However, one of the most serious problems regarding the culture of marine fishes is the mortality associated with pathogenic bacteria that occurs in the critical phases of larval development. Conventional approaches, such as the use of antimicrobial drugs to control diseases, have had limited success in the prevention or cure of aquatic diseases. Promising alternatives to antibiotics are probiotics, which are food supplements consisting of live microorganisms that benefit the host organism. In the search for more effective and environmentally friendly treatments with probionts against pathogenic species in shrimp larval culture, the probiotic properties of Bacillus strains isolated from Artemia culture such as antibacterial activity, adhesion, pathogenicity, toxicity and the effect of marine stress on viability and survival were investigated, as well as the changes occurring in their properties. Analyses showed that these bacteria corresponded to the genus Bacillus sp. Antagonism and adherence assays revealed that these strains have an inhibitory effect against pathogenic bacteria in vitro and in vivo conditions and are fairly adherent. Challenge tests performed with Artemia larvae provided evidence that the tested Bacillus strains were neither pathogenic nor toxic to the host. The tested strains maintained their viability and their probiotic properties during the period of study. The results suggest that the tested strains have suffered changes allowing them to survive in seawater in the absence of nutrients and outside their natural host, identifying them as potential probiotic candidates for Artemia culture.Keywords: bacillus, probiotic, cell viability, stress response
Procedia PDF Downloads 3844082 Characteristics of Oil-In-Water Emulsion Stabilized with Pregelatinized Waxy Rice Starch
Authors: R. Yulianingsih, S. Gohtani
Abstract:
Characteristics of pregelatinized waxy rice starch (PWR) gelatinized at different temperatures (65, 75, and 85 °C, abbreviated as PWR 65, 75 and 85 respectively) and their emulsion-stabilizing properties at different starch concentrations (3, 5, 7, and 9%) were studied. The yield stress and consistency index value of PWR solution increased with an increase in starch concentration. The pseudoplasticity of PWR 65 solution increased and that for both PWR 75 and 85 solution decreased with an increase in starch concentration. Small angle X-ray scattering (SAXS) profiles analyzed by Kratky Plot indicated that PWR 65 is natively unfolded particles while PWR 75 and 85 are the globular particles. The characteristics of emulsions stabilized with PWR were influenced by the temperature of gelatinization process and starch concentration. Elevated concentration of starch decreased the value of yield stress and increased the consistency index. PWR 65 produce stable emulsion to creaming at starch concentrations more than 5%, while PWR 85 is able to produce stable emulsion to both creaming and coalescence of droplets.Keywords: emulsion, gelatinization temperature, rheology, small-angle X-ray scattering, waxy rice starch
Procedia PDF Downloads 1564081 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee
Abstract:
Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics
Procedia PDF Downloads 6204080 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature
Procedia PDF Downloads 1304079 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media
Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding
Abstract:
A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.Keywords: discrete elements, Hertzian contact, polydispersity, weakly nonlinear, wave propagation
Procedia PDF Downloads 202