Search results for: adaptive random testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5988

Search results for: adaptive random testing

4518 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 376
4517 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs

Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard

Abstract:

Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.

Keywords: 2D FPPA, hop tests, isokinetic testing, LSI

Procedia PDF Downloads 66
4516 Assessment of the Growth Enhancement Support Scheme in Adamawa State, Nigeria

Authors: Oto J. Okwu, Ornan Henry, Victor A. Otene

Abstract:

The agricultural sector contributes a great deal to the sustenance of Nigeria’s food security and economy, with an attendant impact on rural development. In spite of the relatively high number of farmers in the country, self-sufficiency in food production is still a challenge. Farmers are faced with myriad problems which hinder their production efficiency, one of which is their access to agricultural inputs required for optimum production. To meet the challenges faced by farmers, the government at the federal level has come up with many agricultural policies, one of which is the Agricultural Transformation Agenda (ATA). The Growth Enhancement Support Scheme (GESS) is one of the critical components of ATA, which is aimed at ensuring the effective distribution of agricultural inputs delivered directly to farmers, and at a regulated cost. After about 8 years of launching this policy, it will be necessary to carry out an assessment of GESS and determine the impact it has made on rural farmers with respect to their access to farm inputs. This study was carried out to assess the Growth Enhancement Support Scheme (GESS) in Adamawa State, Nigeria. Crop farmers who registered under the GESS in Adamawa State, Nigeria, formed the population for the study. Primary data for the study were obtained through a survey, and the use of a structured questionnaire. A sample size of 167 respondents was selected using multi-stage, purposive, and random sampling techniques. The validity and reliability of the research instrument (questionnaire) were obtained through pilot testing and test-retest method, respectively. The objectives of the study were to determine the difference in the level of access to agricultural inputs before and after GESS, determine the difference in cost of agricultural inputs before and after GESS, and to determine the challenges faced by rural farmers in accessing agricultural inputs through GESS. Both descriptive and inferential statistics were used in analyzing the collected data. Specifically, Mann-Whitney, student t-test, and factor analysis were used to test the stated hypotheses. Research findings revealed there was a significant difference in the level of access to farm inputs after the introduction of GESS (Z=14.216). Also, there was a significant difference in the cost of agro-inputs after the introduction of GESS (Pr |T| > |t|= 0.0000). The challenges faced by respondents in accessing agro-inputs through GESS were administrative and technical in nature. Based on the findings of the research, it was recommended that efforts be made by the government to sustain the GESS, as it has significantly improved the level of farmers’ access to agricultural inputs and has reduced the cost of agro-inputs, while administrative challenges faced by the respondents in accessing inputs be addressed by the government, and extension agents assist the farmers to overcome the technical challenges they face in accessing inputs.

Keywords: agricultural policy, agro-inputs, assessment, growth enhancement support scheme, rural farmers

Procedia PDF Downloads 110
4515 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses

Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia

Abstract:

The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.

Keywords: influenza virus, molecular imprinting, nanoparticles, polymers

Procedia PDF Downloads 362
4514 Functionalized Nano porous Ceramic Membranes for Electrodialysis Treatment of Harsh Wastewater

Authors: Emily Rabe, Stephanie Candelaria, Rachel Malone, Olivia Lenz, Greg Newbloom

Abstract:

Electrodialysis (ED) is a well-developed technology for ion removal in a variety of applications. However, many industries generate harsh wastewater streams that are incompatible with traditional ion exchange membranes. Membrion® has developed novel ceramic-based ion exchange membranes (IEMs) offering several advantages over traditional polymer membranes: high performance in low pH, chemical resistance to oxidizers, and a rigid structure that minimizes swelling. These membranes are synthesized with our patented silane-based sol-gel techniques. The pore size, shape, and network structure are engineered through a molecular self-assembly process where thermodynamic driving forces are used to direct where and how pores form. Either cationic or anionic groups can be added within the membrane nanopore structure to create cation- and anion-exchange membranes. The ceramic IEMs are produced on a roll-to-roll manufacturing line with low-temperature processing. Membrane performance testing is conducted using in-house permselectivity, area-specific resistance, and ED stack testing setups. Ceramic-based IEMs show comparable performance to traditional IEMs and offer some unique advantages. Long exposure to highly acidic solutions has a negligible impact on ED performance. Additionally, we have observed stable performance in the presence of strong oxidizing agents such as hydrogen peroxide. This stability is expected, as the ceramic backbone of these materials is already in a fully oxidized state. This data suggests ceramic membranes, made using sol-gel chemistry, could be an ideal solution for acidic and/or oxidizing wastewater streams from processes such as semiconductor manufacturing and mining.

Keywords: ion exchange, membrane, silane chemistry, nanostructure, wastewater

Procedia PDF Downloads 86
4513 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks

Authors: Wided Abidi, Tahar Ezzedine

Abstract:

Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.

Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency

Procedia PDF Downloads 329
4512 Micro-Scale Digital Image Correlation-Driven Finite Element Simulations of Deformation and Damage Initiation in Advanced High Strength Steels

Authors: Asim Alsharif, Christophe Pinna, Hassan Ghadbeigi

Abstract:

The development of next-generation advanced high strength steels (AHSS) used in the automotive industry requires a better understanding of local deformation and damage development at the scale of their microstructures. This work is focused on dual-phase DP1000 steels and involves micro-mechanical tensile testing inside a scanning electron microscope (SEM) combined with digital image correlation (DIC) to quantify the heterogeneity of deformation in both ferrite and martensite and its evolution up to fracture. Natural features of the microstructure are used for the correlation carried out using Davis LaVision software. Strain localization is observed in both phases with tensile strain values up to 130% and 110% recorded in ferrite and martensite respectively just before final fracture. Damage initiation sites have been observed during deformation in martensite but could not be correlated to local strain values. A finite element (FE) model of the microstructure has then been developed using Abaqus to map stress distributions over representative areas of the microstructure by forcing the model to deform as in the experiment using DIC-measured displacement maps as boundary conditions. A MATLAB code has been developed to automatically mesh the microstructure from SEM images and to map displacement vectors from DIC onto the FE mesh. Results show a correlation of damage initiation at the interface between ferrite and martensite with local principal stress values of about 1700MPa in the martensite phase. Damage in ferrite is now being investigated, and results are expected to bring new insight into damage development in DP steels.

Keywords: advanced high strength steels, digital image correlation, finite element modelling, micro-mechanical testing

Procedia PDF Downloads 145
4511 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 289
4510 Self-serving Anchoring of Self-judgments

Authors: Elitza Z. Ambrus, Bjoern Hartig, Ryan McKay

Abstract:

Individuals’ self-judgments might be malleable and influenced by comparison with a random value. On the one hand, self-judgments reflect our self-image, which is typically considered to be stable in adulthood. Indeed, people also strive hard to maintain a fixed, positive moral image of themselves. On the other hand, research has shown the robustness of the so-called anchoring effect on judgments and decisions. The anchoring effect refers to the influence of a previously considered comparative value (anchor) on a consecutive absolute judgment and reveals that individuals’ estimates of various quantities are flexible and can be influenced by a salient random value. The present study extends the anchoring paradigm to the domain of the self. We also investigate whether participants are more susceptible to self-serving anchors, i.e., anchors that enhance participant’s self-image, especially their moral self-image. In a pre-reregistered study via the online platform Prolific, 249 participants (156 females, 89 males, 3 other and 1 who preferred not to specify their gender; M = 35.88, SD = 13.91) ranked themselves on eight personality characteristics. However, in the anchoring conditions, respondents were asked to first indicate whether they thought they would rank higher or lower than a given anchor value before providing their estimated rank in comparison to 100 other anonymous participants. A high and a low anchor value were employed to differentiate between anchors in a desirable (self-serving) direction and anchors in an undesirable (self-diminishing) direction. In the control treatment, there was no comparison question. Subsequently, participants provided their self-rankings on the eight personality traits with two personal characteristics for each combination of the factors desirable/undesirable and moral/non-moral. We found evidence of an anchoring effect for self-judgments. Moreover, anchoring was more efficient when people were anchored in a self-serving direction: the anchoring effect was enhanced when supporting a more favorable self-view and mitigated (even reversed) when implying a deterioration of the self-image. The self-serving anchoring was more pronounced for moral than for non-moral traits. The data also provided evidence in support of a better-than-average effect in general as well as a magnified better-than-average effect for moral traits. Taken together, these results suggest that self-judgments might not be as stable in adulthood as previously thought. In addition, considerations of constructing and maintaining a positive self-image might interact with the anchoring effect on self-judgments. Potential implications of our results concern the construction and malleability of self-judgments as well as the psychological mechanism shaping anchoring.

Keywords: anchoring, better-than-average effect, self-judgments, self-serving anchoring

Procedia PDF Downloads 180
4509 The Study of ZigBee Protocol Application in Wireless Networks

Authors: Ardavan Zamanpour, Somaieh Yassari

Abstract:

ZigBee protocol network was developed in industries and MIT laboratory in 1997. ZigBee is a wireless networking technology by alliance ZigBee which is designed to low board and low data rate applications. It is a Protocol which connects between electrical devises with very low energy and cost. The first version of IEEE 802.15.4 which was formed ZigBee was based on 2.4GHZ MHZ 912MHZ 868 frequency band. The name of system is often reminded random directions that bees (BEES) traversing during pollination of products. Such as alloy of the ways in which information packets are traversed within the mesh network. This paper aims to study the performance and effectiveness of this protocol in wireless networks.

Keywords: ZigBee, protocol, wireless, networks

Procedia PDF Downloads 369
4508 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine

Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav

Abstract:

This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.

Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA

Procedia PDF Downloads 209
4507 Energy Saving Techniques for MIMO Decoders

Authors: Zhuofan Cheng, Qiongda Hu, Mohammed El-Hajjar, Basel Halak

Abstract:

Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems.

Keywords: energy, lattice reduction, MIMO, VLSI

Procedia PDF Downloads 329
4506 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 269
4505 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations, hybrid system

Procedia PDF Downloads 418
4504 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
4503 Meet Automotive Software Safety and Security Standards Expectations More Quickly

Authors: Jean-François Pouilly

Abstract:

This study addresses the growing complexity of embedded systems and the critical need for secure, reliable software. Traditional cybersecurity testing methods, often conducted late in the development cycle, struggle to keep pace. This talk explores how formal methods, integrated with advanced analysis tools, empower C/C++ developers to 1) Proactively address vulnerabilities and bugs, which includes formal methods and abstract interpretation techniques to identify potential weaknesses early in the development process, reducing the reliance on penetration and fuzz testing in later stages. 2) Streamline development by focusing on bugs that matter, with close to no false positives and catching flaws earlier, the need for rework and retesting is minimized, leading to faster development cycles, improved efficiency and cost savings. 3) Enhance software dependability which includes combining static analysis using abstract interpretation with full context sensitivity, with hardware memory awareness allows for a more comprehensive understanding of potential vulnerabilities, leading to more dependable and secure software. This approach aligns with industry best practices (ISO2626 or ISO 21434) and empowers C/C++ developers to deliver robust, secure embedded systems that meet the demands of today's and tomorrow's applications. We will illustrate this approach with the TrustInSoft analyzer to show how it accelerates verification for complex cases, reduces user fatigue, and improves developer efficiency, cost-effectiveness, and software cybersecurity. In summary, integrating formal methods and sound Analyzers enhances software reliability and cybersecurity, streamlining development in an increasingly complex environment.

Keywords: safety, cybersecurity, ISO26262, ISO24434, formal methods

Procedia PDF Downloads 19
4502 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 136
4501 Robust Diagnosis Efficiency by Bond-Graph Approach

Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi

Abstract:

This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.

Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR

Procedia PDF Downloads 305
4500 Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness

Authors: S. M. Mahdi Niktabara, K. Seshagiri Raob, Amit Kumar Shrivastavac, Jiří Ščučkaa

Abstract:

The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude.

Keywords: cyclic shear load, frequency of load, amplitude of displacement, normal stiffness

Procedia PDF Downloads 151
4499 Rest API Based System-level Test Automation for Mobile Applications

Authors: Jisoo Song

Abstract:

Today’s mobile applications are communicating with servers more and more in order to access external services or information. Also, server-side code changes are more frequent than client-side code changes in a mobile application. The frequent changes lead to an increase in testing cost increase. To reduce costs, UI based test automation can be one of the solutions. It is a common automation technique in system-level testing. However, it can be unsuitable for mobile applications. When you automate tests based on UI elements for mobile applications, there are some limitations such as the overhead of script maintenance or the difficulty of finding invisible defects that UI elements cannot represent. To overcome these limitations, we present a new automation technique based on Rest API. You can automate system-level tests through test scripts that you write. These scripts call a series of Rest API in a user’s action sequence. This technique does not require testers to know the internal implementation details, only input and expected output of Rest API. You can easily modify test cases by modifying Rest API input values and also find problems that might not be evident from the UI level by validating output values. For example, when an application receives price information from a payment server and user cannot see it at UI level, Rest API based scripts can check whether price information is correct or not. More than 10 mobile applications at our company are being tested automatically based on Rest API scripts whenever application source code, mostly server source code, is built. We are finding defects right away by setting a script as a build job in CI server. The build job starts when application code builds are completed. This presentation will also include field cases from our company.

Keywords: case studies at SK Planet, introduction of rest API based test automation, limitations of UI based test automation

Procedia PDF Downloads 448
4498 Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art

Authors: L. Pavithra, R. Sharmila, Shivani Sridhar

Abstract:

Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading.

Keywords: RC column, Seismic behaviour, cyclic behaviour, biaxial testing, ductile behaviour

Procedia PDF Downloads 366
4497 Fabrication of a Potential Point-of-Care Device for Hemoglobin A1c: A Lateral Flow Immunosensor

Authors: Shu Hwang Ang, Choo Yee Yu, Geik Yong Ang, Yean Yean Chan, Yatimah Binti Alias, And Sook Mei Khor

Abstract:

With the high prevalence of Type 2 diabetes mellitus across the world, the morbidities and mortalities associated with Type 2 diabetes have significant impact on the production line for a nation. With routine scheduled clinical visits to manage Type 2 diabetes, diabetic patients with hectic lifestyles can have low clinical compliance. Hence, it often decreases the effectiveness of diabetic management personalized for each diabetic patient. Here, we report a useful developed point-of-care (POC) device that detect glycated hemoglobin (HbA1c, biomarker for long-term Type 2 diabetic management). In fact, the established POC devices certified to be used in clinical setting are not only expensive ($ 8 to $10 per test), they also require skillful practitioners to perform sampling and interpretation. As a paper-based biosensor, the developed HbA1c biosensor utilized lateral flow principle to offer an alternative for cost-effective (approximately $2 per test) and end-user friendly device for household testing. Requiring as little as 2 L of finger-picked blood, the test can be performed at the household with just simple dilution and washings. With visual interpretation of numbers of test lines shown on the developed biosensor, it can be interpreted as easy as a urine pregnancy test, aided with scale of intensity provided. In summary, the developed HbA1c immunosensor has been tested to have high selectivity towards HbA1c, and is stable with reasonably good performance in clinical testing. Therefore, our developed HbA1c immunosensor has high potential to be an effective diabetic management tool to increase patient compliance and thus contain the progression of the diabetes.

Keywords: blood, glycated hemoglobin (HbA1c), lateral flow, type 2 diabetes mellitus

Procedia PDF Downloads 528
4496 Assessment of the Physical Activity Level and the Nutritional Status among Students in Bowen University, Iwo, Osun State, Nigeria

Authors: Fakunle Egbo, Kammalchukwu A., Akinremi T.

Abstract:

Physical activity and nutritional status influence the health status and cognition of young adults. Lack of physical activity increases the likelihood of developing obesity which leads to the risk of heart diseases and other risk factors like high blood pressure, high blood cholesterol, diabetes etc. The study employed a cross-sectional study design. The study used a multi stage sampling technique multi- stage sampling technique; Purposive, for the selection of colleges that would be used, stratified random sampling for stratifying the colleges into departments and the simple random sampling for the selection of each respondent from the departments. Structured questionnaires were used to obtain data from the respondents and pre-tested anthropometric instruments were used to get the weight and height of the respondents and statistically analyzed using SPSS version 22.0 and the TDA (Total dietary allowance) software which was used to analyze the nutrient intake of the respondents. This study showed that they comprised of 50.1% males and 40.9% females. Slightly above average 51.8% were between ages of 15-19 with mean age being 19.57 years; ages 20-24 were slightly below average at 45.7%. The male students 58.7% had vigorous physical activity, whereas majority of females 76.5% had light physical activity level. 39.1% of the male students carried out physical activity 2-3 times per week while One third of the female students (38.3%) carried out physical activity 6-7 times per week. Majority of the respondents had Inadequate Protein- 63.8%, Carbohydrate- 60.2%, and Dietary fiber- 88.8. 36% eat rice 4-6 times per week. Majority of the respondents had inadequate fruit and vegetables (Efo, Banana,) at 47.7%, 40.6% respectively. Using Body mass index, (63.2%) have normal weight. 22.9% are overweight, 6.8% are underweight, 5.4% have grade 1 obesity and 1.6% have grade II obesity. There was a statistically significant association between the physical activity of the respondents with their nutritional status (p=0.037), physical activity and sex (p=0.000), nutritional status and amount spent on food daily (p=0.007). The study concluded that the physical activity level of the respondents, most especially the females were low; One third of the students were malnourished therefore, there should be an urgent need for improving the overall health status of students by providing the students with well-equipped gyms and other sporting equipment’s that would make them participate actively and keep fit.

Keywords: physical activity, nutritional status, undergraduates, dietary pattern

Procedia PDF Downloads 68
4495 The Adaptive Role of Negative Emotions in Optimal Functioning

Authors: Brianne Nichols, John A. Parkinson

Abstract:

Positive Psychology has provided a rich understanding of the beneficial effects of positive emotions in relation to optimal functioning, and research has been devoted to promote states of positive feeling and thinking. While this is a worthwhile pursuit, positive emotions are not useful in all contexts - some situations may require the individual to make use of their negative emotions to reach a desired end state. To account for the potential value of a wider range of emotional experiences that are common to the human condition, Positive Psychology needs to expand its horizons and investigate how individuals achieve positive outcomes using varied means. The current research seeks to understand the positive psychology of fear of failure (FF), which is a commonly experienced negative emotion relevant to most life domains. On the one hand, this emotion has been linked with avoidance motivation and self-handicap behaviours, on the other; FF has been shown to act as a drive to move the individual forward. To fully capture the depth of this highly subjective emotional experience and understand the circumstances under which FF may be adaptive, this study adopted a mixed methods design using SenseMaker; a web-based tool that combines the richness of narratives with the objectivity of numerical data. Two hundred participants consisting mostly of undergraduate university students shared a story of a time in the recent past when they feared failure of achieving a valued goal. To avoid researcher bias in the interpretation of narratives, participants self-signified their stories in a tagging system that was based on researchers’ aim to explore the role of past failures, the cognitive, emotional and behavioural profile of individuals high and low in FF, and the relationship between these factors. In addition, the role of perceived personal control and self-esteem were investigated in relation to FF using self-report questionnaires. Results from quantitative analyses indicated that individuals with high levels of FF, compared to low, were strongly influenced by past failures and preoccupied with their thoughts and emotions relating to the fear. This group also reported an unwillingness to accept their internal experiences, which in turn was associated with withdrawal from goal pursuit. Furthermore, self-esteem was found to mediate the relationship between perceived control and FF, suggesting that self-esteem, with or without control beliefs, may have the potential to buffer against high FF. It is hoped that the insights provided by the current study will inspire future research to explore the ways in which ‘acceptance’ may help individuals keep moving towards a goal despite the presence of FF, and whether cultivating a non-contingent self-esteem is the key to resilience in the face of failures.

Keywords: fear of failure, goal-pursuit, negative emotions, optimal functioning, resilience

Procedia PDF Downloads 195
4494 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel, S. P. Dave, M. V Shah

Abstract:

Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.

Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity

Procedia PDF Downloads 68
4493 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 310
4492 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
4491 Relationship and Comorbidity Between Down Syndrome and Autism Spectrum Disorder

Authors: Javiera Espinosa, Patricia López, Noelia Santos, Nadia Loro, Esther Moraleda

Abstract:

In recent years, there has been a notable increase in the number of investigations that establish that Down Syndrome and Autism Spectrum Disorder are diagnoses that can coexist together. However, there are also many studies that consider that both diagnoses present neuropsychological, linguistic and adaptive characteristics with a totally different profile. The objective of this research is to question whether there really can be a profile that encompasses both disorders or if they can be incompatible with each other. To this end, a review of the scientific literature of recent years has been carried out. The results indicate that the two lines collect opposite approaches. On the one hand, there is research that supports the increase in comorbidity between Down Syndrome and Autism Spectrum Disorder, and on the other hand, many investigations show a totally different general development profile between the two. The discussion focuses on discussing both lines of work and on proposing future lines of research in this regard.

Keywords: disability, language, speech, down syndrome

Procedia PDF Downloads 73
4490 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments

Authors: Naime Boudemagh

Abstract:

In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.

Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems

Procedia PDF Downloads 602
4489 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.

Keywords: HVFA concrete, NDT testing, residual strength

Procedia PDF Downloads 386