Search results for: Sewage Network
3520 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds
Authors: Zeina Merabi, Arij Dao
Abstract:
The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration
Procedia PDF Downloads 653519 Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria
Authors: Volker Mittendorf, Andre Schmale
Abstract:
In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS).Keywords: populism, communication style, election, text mining, social media
Procedia PDF Downloads 1493518 An Intelligent WSN-Based Parking Guidance System
Authors: Sheng-Shih Wang, Wei-Ting Wang
Abstract:
This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.Keywords: Arduino, parking guidance, wireless sensor network, ZigBee
Procedia PDF Downloads 5753517 Prioritization of Mutation Test Generation with Centrality Measure
Authors: Supachai Supmak, Yachai Limpiyakorn
Abstract:
Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank will be focused first when developing their test cases as these modules are vulnerable to defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.Keywords: software testing, mutation test, network centrality measure, test case prioritization
Procedia PDF Downloads 1123516 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network
Procedia PDF Downloads 2763515 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots
Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu
Abstract:
Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law
Procedia PDF Downloads 843514 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 1713513 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder
Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu
Abstract:
Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network
Procedia PDF Downloads 1503512 Cost-Effective, Accuracy Preserving Scalar Characterization for mmWave Transceivers
Authors: Mohammad Salah Abdullatif, Salam Hajjar, Paul Khanna
Abstract:
The development of instrument grade mmWave transceivers comes with many challenges. A general rule of thumb is that the performance of the instrument must be higher than the performance of the unit under test in terms of accuracy and stability. The calibration and characterizing of mmWave transceivers are important pillars for testing commercial products. Using a Vector Network Analyzer (VNA) with a mixer option has proven a high performance as an approach to calibrate mmWave transceivers. However, this approach comes with a high cost. In this work, a reduced-cost method to calibrate mmWave transceivers is proposed. A comparison between the proposed method and the VNA technology is provided. A demonstration of significant challenges is discussed, and an approach to meet the requirements is proposed.Keywords: mmWave transceiver, scalar characterization, coupler connection, magic tee connection, calibration, VNA, vector network analyzer
Procedia PDF Downloads 1073511 Gulfnet: The Advent of Computer Networking in Saudi Arabia and Its Social Impact
Authors: Abdullah Almowanes
Abstract:
The speed of adoption of new information and communication technologies is often seen as an indicator of the growth of knowledge- and technological innovation-based regional economies. Indeed, technological progress and scientific inquiry in any society have undergone a particularly profound transformation with the introduction of computer networks. In the spring of 1981, the Bitnet network was launched to link thousands of nodes all over the world. In 1985 and as one of the first adopters of Bitnet, Saudi Arabia launched a Bitnet-based network named Gulfnet that linked computer centers, universities, and libraries of Saudi Arabia and other Gulf countries through high speed communication lines. In this paper, the origins and the deployment of Gulfnet are discussed as well as social, economical, political, and cultural ramifications of the new information reality created by the network. Despite its significance, the social and cultural aspects of Gulfnet have not been investigated in history of science and technology literature to a satisfactory degree before. The presented research is based on an extensive archival research aimed at seeking out and analyzing of primary evidence from archival sources and records. During its decade and a half-long existence, Gulfnet demonstrated that the scope and functionality of public computer networks in Saudi Arabia have to be fine-tuned for compliance with Islamic culture and political system of the country. It also helped lay the groundwork for the subsequent introduction of the Internet. Since 1980s, in just few decades, the proliferation of computer networks has transformed communications world-wide.Keywords: Bitnet, computer networks, computing and culture, Gulfnet, Saudi Arabia
Procedia PDF Downloads 2453510 The Application of Cellulose-Based Halloysite-Carbon Adsorbent to Remove Chloroxylenol from Water
Authors: Laura Frydel
Abstract:
Chloroxylenol is a common ingredient in disinfectants. Due to the use of this compound in large amounts, it is more and more often detected in rivers, sewage, and also in human body fluids. In recent years, there have been concerns about the potentially harmful effects of chloroxylenol on human health and the environment. This paper presents the synthesis, a brief characterization and the use of a halloysite-carbon adsorbent for the removal of chloroxylenol from water. The template in the halloysite-carbon adsorbent was acid treated bleached halloysite, and the carbon precursor was cellulose dissolved in zinc (II) chloride, which was dissolved in 37% hydrochloric acid. The FTIR spectra before and after the adsorption process allowed to determine the presence of functional groups, bonds in the halloysite-carbon composite, and the binding mechanism of the adsorbent and adsorbate. The morphology of the bleached halloysite sample and the sample of the halloysite-carbon adsorbent were characterized by scanning electron microscopy (SEM) with surface analysis by X-ray dispersion spectrometry (EDS). The specific surface area, total pore volume and mesopore and micropore volume were determined using the ASAP 2020 volumetric adsorption analyzer. Total carbon and total organic carbon were determined for the halloysite-carbon adsorbent. The halloysite-carbon adsorbent was used to remove chloroxylenol from water. The degree of removal of chloroxylenol from water using the halloysite-carbon adsorbent was about 90%. Adsorption studies show that the halloysite-carbon composite can be used as an effective adsorbent for removing chloroxylenol from water.Keywords: adsorption, cellulose, chloroxylenol, halloysite
Procedia PDF Downloads 1903509 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University
Authors: Wipada Chaiwchan
Abstract:
This research aims to study behaviors in using social networks of Corporate personnel of Suan Sunandha Rajabhat University. The sample used in the study were two groups: 1) Academic Officer 70 persons and 2) Operation Officer 143 persons were used in this study. The tools in this research consisted of questionnaire which the data were analyzed by using percentage, average (X) and Standard deviation (S.D.) and Independent Sample T-Test to test the difference between the mean values obtained from two independent samples, and One-way anova to analysis of variance, and Multiple comparisons to test that the average pair of different methods by Fisher’s Least Significant Different (LSD). The study result found that the most of corporate personnel have purpose in using social network to information awareness aspect was knowledge and online conference with social media. By using the average more than 3 hours per day in everyday. Using time in working in one day and there are computers connected to the Internet at home, by using the communication in the operational processes. Behaviors using social networks in relation to gender, age, job title, department, and type of personnel. Hypothesis testing, and analysis of variance for the effects of this analysis is divided into three aspects: The use of online social networks, the attitude of the users and the security analysis has found that Corporate Personnel of Suan Sunandha Rajabhat University. Overall and specifically at the high level, and considering each item found all at a high level. By sorting of the social network (X=3.22), The attitude of the users (X= 3.06) and the security (X= 3.11). The overall behaviors using of each side (X=3.11).Keywords: social network, behaviors, social media, computer information systems
Procedia PDF Downloads 3943508 A Vision Making Exercise for Twente Region; Development and Assesment
Authors: Gelareh Ghaderi
Abstract:
the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision
Procedia PDF Downloads 2273507 Staying When Everybody Else Is Leaving: Coping with High Out-Migration in Rural Areas of Serbia
Authors: Anne Allmrodt
Abstract:
Regions of South-East Europe are characterised by high out-migration for decades. The reasons for leaving range from the hope of a better work situation to a better health care system and beyond. In Serbia, this high out-migration hits the rural areas in particular so that the population number is in the red repeatedly. It might not be hard to guess that this negative population growth has the potential to create different challenges for those who stay in rural areas. So how are they coping with the – statistically proven – high out-migration? Having this in mind, the study is investigating the people‘s individual awareness of the social phenomenon high out-migration and their daily life strategies in rural areas. Furthermore, the study seeks to find out the people’s resilient skills in that context. Is the condition of high out-migration conducive for resilience? The methodology combines a quantitative and a qualitative approach (mixed methods). For the quantitative part, a standardised questionnaire has been developed, including a multiple choice section and a choice experiment. The questionnaire was handed out to people living in rural areas of Serbia only (n = 100). The sheet included questions about people’s awareness of high out-migration, their own daily life strategies or challenges and their social network situation (data about the social network was necessary here since it is supposed to be an influencing variable for resilience). Furthermore, test persons were asked to make different choices of coping with high out-migration in a self-designed choice experiment. Additionally, the study included qualitative interviews asking citizens from rural areas of Serbia. The topics asked during the interview focused on their awareness of high out-migration, their daily life strategies, and challenges as well as their social network situation. Results have shown the following major findings. The awareness of high out-migration is not the same with all test persons. Some declare it as something positive for their own life, others as negative or not effecting at all. The way of coping generally depended – maybe not surprising – on the people’s social network. However – and this might be the most important finding - not everybody with a certain number of contacts had better coping strategies and was, therefore, more resilient. Here the results show that especially people with high affiliation and proximity inside their network were able to cope better and shew higher resilience skills. The study took one step forward in terms of knowledge about societal resilience as well as coping strategies of societies in rural areas. It has shown part of the other side of nowadays migration‘s coin and gives a hint for a more sustainable rural development and community empowerment.Keywords: coping, out-migration, resilience, rural development, social networks, south-east Europe
Procedia PDF Downloads 1283506 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal
Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader
Abstract:
DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform
Procedia PDF Downloads 793505 Blockchain: Institutional and Technological Disruptions in the Public Sector
Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira
Abstract:
The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.Keywords: blockchain, LACChain, public sector, technological disruptions
Procedia PDF Downloads 1723504 Urban Ethical Fashion Networks of Design, Production and Retail in Taiwan
Authors: WenYing Claire Shih, Konstantinos Agrafiotis
Abstract:
The circular economy has become one of the seven fundamental pillars of Taiwan’s economic development, as this is promulgated by the government. The model of the circular economy, with its fundamental premise of waste elimination, can transform the textile and clothing sectors from major pollutant industries to a much cleaner alternative for a better quality of all citizens’ lives. In a related vein, the notion of the creative economy and more specifically the fashion industry can prompt similar results in terms of jobs and wealth creation. The combining forces of the circular and creative economies and their beneficial output have resulted in the configuration of ethical urban networks which potentially may lead to sources of competitive advantage. All actors involved in the configuration of this urban ethical fashion network from public authorities to private enterprise can bring about positive changes in the urban setting. Preliminary results through action research show that this configuration is an attainable task in terms of circularity by reducing fabric waste produced from local textile mills and through innovative methods of design, production and retail around urban spaces where the network has managed to generate a stream of jobs and financial revenues for all participants. The municipal authorities as the facilitating platform have been of paramount importance in this public-private partnership. In the explorative pilot study conducted about a network of production, consumption in terms of circularity of fashion products, we have experienced a positive disposition. As the network will be fully functional by attracting more participant firms from the textile and clothing sectors, it can be beneficial to Taiwan’s soft power in the region and simultaneously elevate citizens’ awareness on circular methods of fashion production, consumption and disposal which can also lead to the betterment of urban lifestyle and may open export horizons for the firms.Keywords: the circular economy, the creative economy, ethical urban networks, action research
Procedia PDF Downloads 1363503 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”
Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen
Abstract:
Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval
Procedia PDF Downloads 1703502 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 793501 Investigating the Effect of Industrial Wastewater Application on the Concentration of Nitrate and Phosphate in the Soil of the Land Space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company
Authors: Seyed Alireza Farrokhzad, Seyed Amin Alavi, Ebrahim Panahpour
Abstract:
The use of industrial wastewater affects the properties of soil, including its chemical properties. This research was conducted randomly in order to investigate the effect of industrial wastewater application on the concentration of nitrate and phosphate in loamy soil in the land space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company. Industrial wastewater was added in ten irrigation periods in the three months of summer 2022 and was used in a part of the land space of the factory. After finishing the irrigation process with wastewater, the soil nitrate and phosphate values were measured at the depths of 0-25, 25-50 and 50-100 cm. The results showed that adding sewage to the soil increased nitrate and phosphate. The increase of these ions in the soil became loamy. Also, the results showed that the amount of phosphate in the soil decreases with increasing depth, while the amount of nitrate in the soil increases with increasing depth, which is due to the high mobility of nitrate along the soil profile. Also, with the increase in the level of use of wastewater, the amount of nitrate accumulation in the lower layers of the soil increased.Keywords: industrial wastewater, soil chemical properties, loamy texture, land space
Procedia PDF Downloads 843500 Governance of Inter-Organizational Research Cooperation
Authors: Guenther Schuh, Sebastian Woelk
Abstract:
Companies face increasing challenges in research due to higher costs and risks. The intensifying technology complexity and interdisciplinarity require unique know-how. Therefore, companies need to decide whether research shall be conducted internally or externally with partners. On the other hand, research institutes meet increasing efforts to achieve good financing and to maintain high research reputation. Therefore, relevant research topics need to be identified and specialization of competency is necessary. However, additional competences for solving interdisciplinary research projects are also often required. Secured financing can be achieved by bonding industry partners as well as public fundings. The realization of faster and better research drives companies and research institutes to cooperate in organized research networks, which are managed by an administrative organization. For an effective and efficient cooperation, necessary processes, roles, tools and a set of rules need to be determined. The goal of this paper is to show the state-of-art research and to propose a governance framework for organized research networks.Keywords: interorganizational cooperation, design of network governance, research network
Procedia PDF Downloads 3673499 Public Health Informatics: Potential and Challenges for Better Life in Rural Communities
Authors: Shishir Kumar, Chhaya Gangwal, Seema Raj
Abstract:
Public health informatics (PHI) which has seen successful implementation in the developed world, become the buzzword in the developing countries in providing improved healthcare with enhanced access. In rural areas especially, where a huge gap exists between demand and supply of healthcare facilities, PHI is being seen as a major solution. There are factors such as growing network infrastructure and the technological adoption by the health fraternity which provide support to these claims. Public health informatics has opportunities in healthcare by providing opportunities to diagnose patients, provide intra-operative assistance and consultation from a remote site. It also has certain barriers in the awareness, adaptation, network infrastructure, funding and policy related areas. There are certain medico-legal aspects involving all the stakeholders which need to be standardized to enable a working system. This paper aims to analyze the potential and challenges of public health informatics services in rural communities.Keywords: PHI, e-health, public health, health informatics
Procedia PDF Downloads 3763498 A Low Cost and Reconfigurable Experimental Platform for Engineering Lab Education
Authors: S. S. Kenny Lee, C. C. Kong, S. K. Ting
Abstract:
Teaching engineering lab provides opportunity for students to practice theories learned through physical experiment in the laboratory. However, building laboratories to accommodate increased number of students are expensive, making it impossible for an educational institution to afford the high expenses. In this paper, we develop a low cost and remote platform to aid teaching undergraduate students. The platform is constructed where the real experiment setting up in laboratory can be reconfigure and accessed remotely, the aim is to increase student’s desire to learn at which they can interact with the physical experiment using network enabled devices at anywhere in the campus. The platform is constructed with Raspberry Pi as a main control board that provides communication between computer interfaces to the actual experiment preset in the laboratory. The interface allows real-time remote viewing and triggering the physical experiment in the laboratory and also provides instructions and learning guide about the experimental.Keywords: engineering lab, low cost, network, remote platform, reconfigure, real-time
Procedia PDF Downloads 3083497 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4093496 The Role of Risk Attitudes and Networks on the Migration Decision: Empirical Evidence from the United States
Authors: Tamanna Rimi
Abstract:
A large body of literature has discussed the determinants of migration decision. However, the potential role of individual risk attitudes on migration decision has so far been overlooked. The research on migration literature has studied how the expected income differential influences migration flows for a risk neutral individual. However, migration takes place when there is no expected income differential or even the variability of income appears as lower than in the current location. This migration puzzle motivates a recent trend in the literature that analyzes how attitudes towards risk influence the decision to migrate. However, the significance of risk attitudes on migration decision has been addressed mostly in a theoretical perspective in the mainstream migration literature. The efficient outcome of labor market and overall economy are largely influenced by migration in many countries. Therefore, attitudes towards risk as a determinant of migration should get more attention in empirical studies. To author’s best knowledge, this is the first study that has examined the relationship between relative risk aversion and migration decision in US market. This paper considers movement across United States as a means of migration. In addition, this paper also explores the network effect due to the increasing size of one’s own ethnic group to a source location on the migration decision and how attitudes towards risk vary with network effect. Two ethnic groups (i.e. Asian and Hispanic) have been considered in this regard. For the empirical estimation, this paper uses two sources of data: 1) U.S. census data for social, economic, and health research, 2010 (IPUMPS) and 2) University of Michigan Health and Retirement Study, 2010 (HRS). In order to measure relative risk aversion, this study uses the ‘Two Sample Two-Stage Instrumental Variable (TS2SIV)’ technique. This is a similar method of Angrist (1990) and Angrist and Kruegers’ (1992) ‘Two Sample Instrumental Variable (TSIV)’ technique. Using a probit model, the empirical investigation yields the following results: (i) risk attitude has a significantly large impact on migration decision where more risk averse people are less likely to migrate; (ii) the impact of risk attitude on migration varies by other demographic characteristics such as age and sex; (iii) people with higher concentration of same ethnic households living in a particular place are expected to migrate less from their current place; (iv) the risk attitudes on migration vary with network effect. The overall findings of this paper relating risk attitude, migration decision and network effect can be a significant contribution addressing the gap between migration theory and empirical study in migration literature.Keywords: migration, network effect, risk attitude, U.S. market
Procedia PDF Downloads 1623495 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 503494 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design
Authors: H. K. Esfahani, B. Datta
Abstract:
Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site
Procedia PDF Downloads 2313493 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: distributed control, game theory, multi-agent learning, reinforcement learning
Procedia PDF Downloads 4573492 Design and Implementation of Flexible Metadata Editing System for Digital Contents
Authors: K. W. Nam, B. J. Kim, S. J. Lee
Abstract:
Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.Keywords: video, multimedia, metadata, editing tool, XML
Procedia PDF Downloads 1713491 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN
Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu
Abstract:
Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.Keywords: DDoS detection, EMD, relative entropy, SDN
Procedia PDF Downloads 338