Search results for: Couchsurfers prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2233

Search results for: Couchsurfers prediction

763 Investigation of Single Particle Breakage inside an Impact Mill

Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang

Abstract:

In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.

Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method

Procedia PDF Downloads 291
762 Numerical and Experimental Investigation of the Turbulence Level Influence on the Flow through the Staggered Smooth Tube Bundle

Authors: L. Adjlout, N.Benharrat, O. Ladjdel, F. Djemil, A. Adjlout, T. Yahiaoui

Abstract:

The present investigation is an experimental and numerical studies of the turbulence level influence on the flow in a smooth staggered tube bundle. The experiments were carried out in a closed circuit wind tunnel of subsonic type (TE44). Three turbulence levels at the inlet namely 1%, 4.6% and 6.3% and two Reynolds numbers Re = 9300 and Re = 13950 were performed. The obtained results for the central tube show that there are two minimum values for the angles 70° and 280° corresponding to the separation points. The pressure coefficient distributions seem to have constant values between 120° and 240° resulting in Von Karman street configuration in the wake. These remarks were valid for the tests carried out. The numerical study was performed by the ANSYS FLUENT code which solves the averaged Navier-Stokes equations (RANS). Two turbulence models (k-ε RNG and k-ε realizable), two types of grids and two levels of turbulence at the entrance of 4.6% and 6.3% for Reynolds numbers of 9300 and 13950 were considered. The obtained results for the central tube were compared with the present experimental results. It is concluded that the K-ε realizable is more suitable for the pressure distribution prediction than the K-ε RNG model compared to the present experimental results for this studied case.

Keywords: tube bundle, staggered configuration, turbulence level, numerical, experimental

Procedia PDF Downloads 128
761 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 405
760 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin

Procedia PDF Downloads 327
759 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression

Authors: Issam Aouari, Abdelmalek Abdelhamid

Abstract:

For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.

Keywords: duration, earthquake, prediction, regression, soft soil

Procedia PDF Downloads 153
758 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

Authors: Raza Abdulla Saeed

Abstract:

In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a three-dimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.

Keywords: computational fluid dynamics, hydraulic francis turbine, numerical simulation, two-phase mixture cavitation model

Procedia PDF Downloads 561
757 Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method

Authors: Lizhou Chen, Abdelhamid Belgaid, Assem Elsayed, Xiaoming Yang

Abstract:

Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations.

Keywords: compression index, clay, settlement, consolidation, secondary compression index, soil parameter

Procedia PDF Downloads 163
756 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 357
755 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam

Authors: Palash Dey, Sudip Talukdar

Abstract:

In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.

Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam

Procedia PDF Downloads 248
754 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 74
753 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs

Authors: Sadia Munir

Abstract:

Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.

Keywords: activin, biomarkers, growth factors, miroRNA

Procedia PDF Downloads 442
752 Assessment and Prediction of Vehicular Emissions in Commonwealth Avenue, Quezon City at Various Policy and Technology Scenarios Using Simple Interactive Model (SIM-Air)

Authors: Ria M. Caramoan, Analiza P. Rollon, Karl N. Vergel

Abstract:

The Simple Interactive Models for Better Air Quality (SIM-air) is an integrated approach model that allows the available information to support the integrated urban air quality management. This study utilized the vehicular air pollution information system module of SIM-air for the assessment of vehicular emissions in Commonwealth Avenue, Quezon City, Philippines. The main objective of the study is to assess and predict the contribution of different types of vehicles to the vehicular emissions in terms of PM₁₀, SOₓ, and NOₓ at different policy and technology scenarios. For the base year 2017, the results show vehicular emissions of 735.46 tons of PM₁₀, 108.90 tons of SOₓ, and 2,101.11 tons of NOₓ. Motorcycle is the major source of particulates contributing about 52% of the PM₁₀ emissions. Meanwhile, Public Utility Jeepneys contribute 27% of SOₓ emissions and private cars using gasoline contribute 39% of NOₓ emissions. Ambient air quality monitoring was also conducted in the study area for the standard parameters of PM₁₀, S0₂, and NO₂. Results show an average of 88.11 µg/Ncm, 47.41 µg/Ncm and 22.54 µg/Ncm for PM₁₀, N0₂, and SO₂, respectively, all were within the DENR National Ambient Air Quality Guideline Values. Future emissions of PM₁₀, NOₓ, and SOₓ are estimated at different scenarios. Results show that in the year 2030, PM₁₀ emissions will be increased by 186.2%. NOₓ emissions and SOₓ emissions will also be increased by 38.9% and 5.5%, without the implementation of the scenarios.

Keywords: ambient air quality, emissions inventory, mobile air pollution, vehicular emissions

Procedia PDF Downloads 137
751 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling

Authors: Champika S. Kariyawasam

Abstract:

The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.

Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus

Procedia PDF Downloads 134
750 128-Multidetector CT for Assessment of Optimal Depth of Electrode Array Insertion in Cochlear Implant Operations

Authors: Amina Sultan, Mohamed Ghonim, Eman Oweida, Aya Abdelaziz

Abstract:

Objective: To assess the diagnostic reliability of multi-detector CT in pre and post-operative evaluation of cochlear implant candidates. Material and Methods: The study includes 40 patients (18 males and 22 females); mean age 5.6 years. They were classified into two groups: Group A (20 patients): cochlear implant device was Nucleus-22 and Group B (20 patients): the device was MED-EL. Cochlear length (CL) and cochlear height (CH) were measured pre-operatively by 128-multidetector CT. Electrode length (EL) and insertion depth angle (α) were measured post-operatively by MDCT. Results: For Group A mean CL was 9.1 mm ± 0.4 SD; mean CH was 4.1 ± 0.3 SD; mean EL was 18 ± 2.7 SD; mean α angle was 299.05 ± 37 SD. Significant statistical correlation (P < 0.05) was found between preoperative CL and post-operative EL (r²=0.6); as well as EL and α angle (r²=0.7). Group B's mean CL was 9.1 mm ± 0.3 SD; mean CH was 4.1 ± 0.4 SD; mean EL was 27 ± 2.1 SD; mean α angle was 287.6 ± 41.7 SD. Significant statistical correlation was found between CL and EL (r²= 0.6) and α angle (r²=0.5). Also, a strong correlation was found between EL and α angle (r²=0.8). Significant statistical difference was detected between the two devices as regards to the electrode length. Conclusion: Multidetector CT is a reliable tool for preoperative planning and post-operative evaluation of the outcomes of cochlear implant operations. Cochlear length is a valuable prognostic parameter for prediction of the depth of electrode array insertion which can influence criteria of device selection.

Keywords: angle of insertion (α angle), cochlear implant (CI), cochlear length (CL), Multidetector Computed Tomography (MDCT)

Procedia PDF Downloads 194
749 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel

Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa

Abstract:

Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.

Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel

Procedia PDF Downloads 350
748 Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor

Authors: J. Sharon Mano Pappu, Sathyanarayana N. Gummadi

Abstract:

Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways.

Keywords: co-substrate, cybernetic model, diauxic growth, xylose, xylitol

Procedia PDF Downloads 328
747 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria

Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju

Abstract:

The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.

Keywords: school climate, parental involvement, ODL, learning gains, mathematics

Procedia PDF Downloads 521
746 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 368
745 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit

Authors: M. Khalid, W. Rashmi, L. L. Kwan

Abstract:

This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).

Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit

Procedia PDF Downloads 523
744 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model

Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh

Abstract:

Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.

Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding

Procedia PDF Downloads 7
743 Adhesive Connections in Timber: A Comparison between Rough and Smooth Wood Bonding Surfaces

Authors: Valentina Di Maria, Anton Ianakiev

Abstract:

The use of adhesive anchors for wooden constructions is an efficient technology to connect and design timber members in new timber structures and to rehabilitate the damaged structural members of historical buildings. Due to the lack of standard regulation in this specific area of structural design, designers’ choices are still supported by test analysis that enables knowledge, and the prediction, of the structural behavior of glued in rod joints. The paper outlines an experimental research activity aimed at identifying the tensile resistance capacity of several new adhesive joint prototypes made of epoxy resin, steel bar and timber, Oak and Douglas Fir species. The development of new adhesive connectors has been carried out by using epoxy to glue stainless steel bars into pre-drilled holes, characterized by smooth and rough internal surfaces, in timber samples. The realization of a threaded contact surface using a specific drill bit has led to an improved bond between wood and epoxy. The applied changes have also reduced the cost of the joints’ production. The paper presents the results of this parametric analysis and a Finite Element analysis that enables identification and study of the internal stress distribution in the proposed adhesive anchors.

Keywords: glued in rod joints, adhesive anchors, timber, epoxy, rough contact surface, threaded hole shape

Procedia PDF Downloads 551
742 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 393
741 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
740 Ambient Vibration Test and Numerical Modelling of Wind Turbine Towers including Soil Structure Interaction

Authors: Heba Kamal, Ghada Saudi

Abstract:

Due to The rapid expansion of energy and growing number of wind turbines construction in earthquake areas, a design method for simple and accurate evaluation of seismic load to ensure structural integrity is required. In Egypt, there are some appropriate places to build wind turbine towers lie in active seismically regions, so accurate analysis is necessary for prediction of seismic loads with consideration of intensity of the earthquake, soil and structural characteristics. In this research, seismic behavior of wind turbine towers Gamesa Type G52 in Zafarana Wind Farm Egypt is investigated using experimental work by ambient vibration test, and fully dynamic analysis based on time history from El Aqaba Earthquake 1995 using 3D by PLAXIS 3D software, including the soil structure interaction effect. The results obtained from dynamic analyses are discussed. From this study, it is concluded that, the fully dynamic seismic analysis based on used PLAXIS 3D with the aid of the full scale ambient vibration test gives almost good simulation for the seismic loads that can be applied to wind turbine tower design in Egypt.

Keywords: Wind turbine towers, Zafarana Wind Farm, Gamesa Type G52, ambient vibration test

Procedia PDF Downloads 208
739 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia

Authors: Tejeet Singh, Virat Khanna

Abstract:

Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.

Keywords: composite, creep, rotating cylinder, angular speed

Procedia PDF Downloads 445
738 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method

Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović

Abstract:

The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.

Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR

Procedia PDF Downloads 364
737 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers

Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin

Abstract:

The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.

Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference

Procedia PDF Downloads 72
736 Collective Behavior of Mice Passing through a Middle-Exit or Corner-Exit under Panic

Authors: Teng Zhang, Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The existence of animal groups and collective migration are common in nature, and collective behavior is attracting more and more attention of researchers. Previous results have shown that architectural design had an important effect on the process of crowd evacuation. In this paper, collective behavior of mice passing through a middle-exit or corner-exit under panic was investigated. Selfish behavior and herd behavior were easily observed in our video, which caused the congregation with high density near the exit. Triangle structure of congregation formed near the middle-exit while arch structure formed near the corner-exit. It is noteworthy that the exit located at the middle of the wall was more effective for evacuation than at the corner. Meanwhile, the escape sequence of mouse passing through the exit was investigated, and the result showed that the priority depends largely on its location in the congregation. With the level of stimulus increasing, these phenomena still exist. The frequency distributions of time intervals and the burst sizes were also analyzed in this study to explore the secret of collective behavior of mice. These results could provide evidence for the hypothesis or prediction about human behavior in crowd evacuation. However, it is not clear whether the simulated results from different species can correspond to reality or not. Broader comparison among different species about this topic will be eager to be conducted to deepen our understanding of collective behavior in nature.

Keywords: collective behavior, mice, evacuation, exit location

Procedia PDF Downloads 302
735 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 161
734 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks

Authors: Raphael Tuor, Denis Lalanne

Abstract:

The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.

Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction

Procedia PDF Downloads 160