Search results for: void fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1126

Search results for: void fraction

1006 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation

Authors: Kyoung Hoon Kim

Abstract:

A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.

Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance

Procedia PDF Downloads 300
1005 Screening for Larvicidal Activity of Aqueous and Ethanolic Extracts of Fourteen Selected Plants and Formulation of a Larvicide against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) Larvae

Authors: Michael Russelle S. Alvarez, Noel S. Quiming, Francisco M. Heralde

Abstract:

This study aims to: a) obtain ethanolic (95% EtOH) and aqueous extracts of Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii, Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus, Jatropha curcas, Psidium guajava, Gliricidia sepium, Ixora coccinea and Capsicum frutescens and screen them for larvicidal activities against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) larvae; b) to fractionate the most active extract and determine the most active fraction; c) to determine the larvicidal properties of the most active extract and fraction against by computing their percentage mortality, LC50, and LC90 after 24 and 48 hours of exposure; and d) to determine the nature of the components of the active extracts and fractions using phytochemical screening. Ethanolic (95% EtOH) and aqueous extracts of the selected plants will be screened for potential larvicidal activity against Ae. aegypti and Ae. albopictus using standard procedures and 1% malathion and a Piper nigrum based ovicide-larvicide by the Department of Science and Technology as positive controls. The results were analyzed using One-Way ANOVA with Tukey’s and Dunnett’s test. The most active extract will be subjected to partial fractionation using normal-phase column chromatography, and the fractions subsequently screened to determine the most active fraction. The most active extract and fraction were subjected to dose-response assay and probit analysis to determine the LC50 and LC90 after 24 and 48 hours of exposure. The active extracts and fractions will be screened for phytochemical content. The ethanolic extracts of C. citratus, E. hirta, I. coccinea, G. sepium, M. koenigii, E globulus, J. curcas and C. frutescens exhibited significant larvicidal activity, with C. frutescens being the most active. After fractionation, the ethyl acetate fraction was found to be the most active. Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, indoles and steroids. A formulation using talcum powder–300 mg fraction per 1 g talcum powder–was made and again tested for larvicidal activity. At 2 g/L, the formulation proved effective in killing all of the test larvae after 24 hours.

Keywords: larvicidal activity screening, partial purification, dose-response assay, capsicum frutescens

Procedia PDF Downloads 329
1004 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).

Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis

Procedia PDF Downloads 188
1003 Computational Fluid Dynamics of a Bubbling Fluidized Bed in Wood Pellets

Authors: Opeyemi Fadipe, Seong Lee, Guangming Chen, Steve Efe

Abstract:

In comparison to conventional combustion technologies, fluidized bed combustion has several advantages, such as superior heat transfer characteristics due to homogeneous particle mixing, lower temperature needs, nearly isothermal process conditions, and the ability to operate continuously. Computational fluid dynamics (CFD) can help anticipate the intricate combustion process and the hydrodynamics of a fluidized bed thoroughly by using CFD techniques. Bubbling Fluidized bed was model using the Eulerian-Eulerian model, including the kinetic theory of the flow. The model was validated by comparing it with other simulation of the fluidized bed. The effects of operational gas velocity, volume fraction, and feed rate were also investigated numerically. A higher gas velocity and feed rate cause an increase in fluidization of the bed.

Keywords: fluidized bed, operational gas velocity, volume fraction, computational fluid dynamics

Procedia PDF Downloads 83
1002 Evaluation of Mutagenic and Antimutagenic Activities of Some Biological Active Benzoxazoles in the Ames Test

Authors: Özlem Arpacı, Zeliha Soysal, Nuran Diril

Abstract:

Benzoxazoles are heterocyclic compounds that have a fused benzene and an oxazole ring. These heterocyclic compounds are reported to have antibacterial, antitubercular, antifungal, antiviral, antioxidant and anticancer activities. In this study, some benzoxazole derivatives that have broad antimicrobial and potent antitumoral activities, are investigated their mutagenic activities with using the Ames Test. The Ames test was conducted using Salmonella typhimurium TA98, TA100 and TA102 tester strains in the standard plate incorporation assay in the absence of liver S9 fraction. The results are evaluated using SPSS and none of the benzoxazole derivatives showed mutagenic activity using the Ames test in the absence of S9 liver fraction.

Keywords: benzoxazoles, ames test, mutagenic activity, antimutagenic activity, antitumoral activity

Procedia PDF Downloads 345
1001 Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme, and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14, and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml, and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5, and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle.

Keywords: antioxidant enzymes, bonny light crude oil, radicle, mitochondria ATPases

Procedia PDF Downloads 302
1000 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 317
999 Geochemistry of Silt Size Fraction of the Beach Sands Along the Coast Between Al Kuwifia and Tolmeita, NE Libya

Authors: Basem A. El Werfallia, Osama R. Shaltamiab, Ragab M. Al Alwanyc

Abstract:

The present work aims to characterize the geochemistry of the beach sands along the Mediterranean Coast from Al Kuwifia to Tolmeita, NE Libya. The major oxides CaO and MgO are the main constituents of the carbonate minerals; calcite and aragonite. SiO2 is mainly in the form of quartz. Sometimes a high quotient of SiO2 together with the oxides; Al2O3, K2O and partly of Na2O, TiO2 and Fe2O3 are essentially allocated within the structure of the feldspars. Part of Na2O and the content of Cl belong mainly to halite. Part of Fe2O3 and TiO2 may be accommodated as iron oxyhydroxides. Part of CaO and the content of SO3 are allotted within the gypsum structure. Ba, Sr, Th, U and REE are basicallycontrolled by the carbonate fraction, while Cu, Zn, V and Cr are strongly correlated with Al2O3.

Keywords: geochemistry, major oxides, Al Kuwifia, Tolmeita

Procedia PDF Downloads 94
998 Bioactive Molecules Isolated for the First Time from Hyoscyamus albus L. and their Mechanisms Underlying the Anticancer Effects

Authors: Benhouda Afaf, Yahia Massinissa, Paolo Grieco

Abstract:

Hyoscyamus albus L. is a small genus from Solanaceae family known by its use in old traditional medicine in the east of Algeria. Aim: This study aimed to characterize bioactive molecules from H. albus, evaluate their anticancer activity in several cancer cells and investigate their possible molecular mechanism. Materials and Methods: Different compounds (Peak h of fraction F), (Peak 3 of Fraction F), (Peak 1 of fraction C) were isolated from H.albus L by using high-performance chromatography (HPLC), mass spectrometry (MS) and proton NMR (NMR H1). All isolated compounds were subjected to cytotoxicity and antiproliferative assays against a panel of the four cell lines: DU-145, U-2 OS, U-87 MG and LN-229 cell lines and were determined using MTT assay, Annexin V and propodium iodide were used to evaluate apoptosis. Results: The phytochemical study of H. albus Fractions led to the isolation of quercetin-3-O-β-dglucopyranosyl-( 1 → 6)-β-d-glucopyranosid, N-trans-feruloyltyramine, Hydrocaffeoyl-N8- caffeoylspermidine.The biological results indicated that all cell lines were consistently sensitive to P1 FC in a dose-dependent manner. This difference in cytotoxic sensitivity was more pronounced in osteosarcoma cell line, U-2 OS, when compared to prostate cancer and U-87 MG. Cell viability data also demonstrated that only U-87 MG cells were responsive to treatment with Ph FF. compounds P1 FC and Ph FF have induced necrosis and apoptosis in a large part of LN-229 cells. Conclusion: The overall results of the present study provided evidence that isolated compounds are potential therapeutic entities against cancer.

Keywords: hyoscyamus albus, cancer cells, coumpounds, HPLC

Procedia PDF Downloads 5
997 The Effect of SIO2 Addition on the Formation and Superconducting Properties of BI2SR2CACU2O8+D System

Authors: N. Boussouf, M. F. Mosbah, M.Hamel, S. Menassel

Abstract:

SiO2 particles were inserted (added) into Bi2Sr2CaCu2O8+d precursor powders in various weight fractions. The influence of Si addition to the Bi2212 system on its phase formation, microstructure and transport properties is investigated. Samples are characterized by means of X ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDX), magnetic AC susceptibility and resistivity measurements. For 1% of added Si, the results showed an increase of the apparent superconducting volume fraction. All the samples doped with Si contained a majority fraction of the high TC superconducting Bi2212 phase. SEM observation showed that the average grain size of the Si added samples increased more than that of the sample without Si. From resistivity measurement the Tconset was found to be increased by 7 K for 1% and 5% of added Si compared to the pure sample.

Keywords: superconductors, Bi2212, doping, SiO2 particles

Procedia PDF Downloads 231
996 Geochemistry of Silt Size Fraction of the Beach Sands Along the Coast Between Al Kuwifia and Tolmeita, NE Libya

Authors: Basem A. El Werfalli, Osama R. Shaltamiab, Ragab M. Al Alwany

Abstract:

The present work aims to characterize the geochemistry of the beach sands along the Mediterranean Coast from Al Kuwifia to Tolmeita, NE Libya. The major oxides CaO and MgO are the main constituents of the carbonate minerals; calcite and aragonite. SiO₂ is mainly in the form of quartz. Sometimes a high quotient of SiO₂ together with the oxides; Al₂O₃, K₂O and partly of Na₂O, TiO₂ and Fe₂O₃ are essentially allocated within the structure of the feldspars. Part of Na₂O and the content of Cl belong mainly to halite. Part of Fe₂O₃ and TiO₂ may be accommodated as iron oxyhydroxides. Part of CaO and the content of SO₃ are allotted within the gypsum structure. Ba, Sr, Th, U and REE are basically controlled by the carbonate fraction, while Cu, Zn, V and Cr are strongly correlated with Al₂O₃.

Keywords: geochemistry, major oxides, Al Kuwifia, Tolmeita

Procedia PDF Downloads 137
995 Influence of Densification Process and Material Properties on Final Briquettes Quality from FastGrowing Willows

Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš

Abstract:

Biomass treatment through densification is very suitable and important technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and also material parameters which are ultimately reflected on the final solid Biofuels quality. The paper deals with the experimental research of the relationship between technological and material parameters during densification of fast-growing trees, roundly fast-rowing willow. The main goal of presented experimental research is to determine the relationship between pressing pressure raw material fraction size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of fraction size with interaction of pressing pressure and stabilization time on the quality properties of briquettes was determined. These parameters interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and also from densification machines constructions point of view is very important to know about mutual interaction of these parameters on final briquettes quality. The experimental findings presented here are showing the importance of mentioned parameters during the densification process.

Keywords: briquettes density, densification, fraction size, pressing pressure, stabilization time

Procedia PDF Downloads 368
994 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 243
993 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample

Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos

Abstract:

Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.

Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD

Procedia PDF Downloads 158
992 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube

Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan

Abstract:

Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.

Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity

Procedia PDF Downloads 147
991 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 309
990 Masonry Blocks with Recycled Aggregates and Recycled Glass

Authors: Pierre Y. Matar, Louay S. El Hassanieh, Marleine F. Bayssary

Abstract:

The demolished concrete is a major component of the construction and demolition (C&D) waste. The recycled aggregates obtained by crushing the demolished concrete can be used as a substitute of natural aggregates. Another major C&D waste is the flat glass. This glass can be also recycled and used as an aggregate substitute. The objective of this study is to determine the influence of the use of recycled concrete aggregates and recycled glass on the compressive strength and fire resistance of precast concrete masonry blocks. Tests are carried out on four series of blocks whose compositions include different percentages of recycled aggregates and recycled glass and one series of reference blocks whose composition consists of exclusively natural aggregates. The recycled coarse aggregates and recycled glass have 6.3/12.5 mm fraction and the natural aggregates have 0/6.3 mm fraction; no recycled fine aggregates are included in concrete mixes.

Keywords: compressive strength, precast concrete blocks, recycled aggregates, recycled glass

Procedia PDF Downloads 558
989 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer

Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim

Abstract:

In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.

Keywords: terahertz, non-destructive technique, void, IC package

Procedia PDF Downloads 473
988 Inhibition of Echis ocellatus Venom Metalloprotease by Flavonoid-Rich Ethyl Acetate Sub-fraction of Moringa oleifera Leaves (Lam.): in vitro and in silico Approaches

Authors: Adeyi Akindele Oluwatosin, Mustapha Kaosarat Keji, Ajisebiola Babafemi Siji, Adeyi Olubisi Esther, Damilohun Samuel Metibemu, Raphael Emuebie Okonji

Abstract:

Envenoming by Echis ocellatus is potentially life-threatening due to severe hemorrhage, renal failure, and capillary leakage. These effects are attributed to snake venom metalloproteinases (SVMPs). Due to drawbacks in the use of antivenom, natural inhibitors from plants are of interest in studies of new antivenom treatment. Antagonizing effects of bioactive compounds of Moringa oleifera, a known antisnake plant, are yet to be tested against SVMPs of E. ocellatus (SVMP-EO). Ethanol crude extract of M. oleifera was partitioned using n-hexane and ethyl acetate. Each partition was fractionated using column chromatography and tested against SVMP-EO purified through ion-exchange chromatography with EchiTab-PLUS polyvalent anti-venom as control. Phytoconstituents of ethyl acetate fraction were screened against the catalytic site of crystal of BaP1-SVMP, while drug-likeness and ADMET toxicity of compound were equally determined. The molecular weight of isolated SVMP-EO was 43.28 kDa, with a specific activity of 245 U/ml, a percentage yield of 62.83 %, and a purification fold of 0.920. The Vmax and Km values are 2 mg/ml and 38.095 μmol/ml/min, respectively, while the optimal pH and temperature are 6.0 and 40°C, respectively. Polyvalent anti-venom, crude extract, and ethyl acetate fraction of M. oleifera exhibited a complete inhibitory effect against SVMP-EO activity. The inhibitions of the P-1 and P-II metalloprotease’s enzymes by the ethyl acetate fraction are largely due to methanol, 6, 8, 9-trimethyl-4-(2-phenylethyl)-3-oxabicyclo[3.3.1]non-6-en-1-yl)- and paroxypropione, respectively. Both compounds are potential drug candidates with little or no concern of toxicity, as revealed from the in-silico predictions. The inhibitory effects suggest that this compound might be a therapeutic candidate for further exploration for treatment of Ocellatus’ envenoming.

Keywords: Echis ocellatus, Moringa oleifera, anti-venom, metalloproteases, snakebite, molecular docking

Procedia PDF Downloads 149
987 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering

Procedia PDF Downloads 397
986 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer

Authors: A. J. Cobley, L. Krishnan

Abstract:

The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.

Keywords: degassing, low frequency ultrasound, polymer composites, voids

Procedia PDF Downloads 296
985 A Contribution to the Polynomial Eigen Problem

Authors: Malika Yaici, Kamel Hariche, Tim Clarke

Abstract:

The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials.

Keywords: eigenvalues/eigenvectors, latent values/vectors, matrix fraction description, state space description

Procedia PDF Downloads 470
984 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 433
983 Cytotoxic Activity of Marine-derived Fungi Trichoderma Longibrachiatum Against PANC-1 Cell Lines

Authors: Elin Julianti, Marlia Singgih, Masayoshi Arai, Jianyu Lin, Masteria Yunovilsa Putra, Muhammad Azhari, Agnia S. Muharam

Abstract:

The search for a source of new medicinal compounds with anticancer activity from natural products has become important to resolve the ineffectiveness problem of pancreatic cancer therapy. Fungal marine microorganisms are prolific sources of bioactive natural products. In this present study, the ethyl acetate extract of cultured broth of Trichoderma longibrachiatum marine sponge-derived fungi exhibited selective cytotoxicity against human pancreatic carcinoma PANC-1 cells cultured under glucose-deficient conditions (IC50 = 98,4 µg/mL). The T. longibrachiatum was fermented by the static method at room temperature for 60 days. The culture broth was extracted using ethyl acetate by liquid-liquid extraction method. The liquid-liquid extraction was conducted toward the ethyl extract by using 90% MeOH-H₂O and n-|Hexane as a solvent. The extract of 90% MeOH-H₂O was fractionated by liquid extraction using by C₁₈ reversed-phase vacuum flash chromatography using mixtures of MeOH-H₂O, from 50:50 to 100:0, and 1% TFA MeOH as the eluents to yield six fractions. The fraction 2 (MeOH-H2O, 70:30) and fraction 3 (MeOH-H2O, 80:20) showed moderate cytotoxicity with IC50 value of 119.3 and 274.7 µg/mL, respectively. Fraction 4 (MeOH-H₂O, 90:10) showed the highest cytotoxicity activity with IC₅₀value of < 10 µg/mL. The chemical compounds of the fractions that are responsible for cytotoxic activity are potent for further investigation.

Keywords: cytotoxic activity, trichoderma longibrachiatum, marine-derived fungi, PANC-1 cell line

Procedia PDF Downloads 292
982 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: recycled concrete aggregate, re-use, workability, compressive strength

Procedia PDF Downloads 371
981 Synthesis of Highly Valuable Fuel Fractions from Waste Date Seeds Oil

Authors: Farrukh Jamil, Ala'A H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Environmental problems and the security of energy supply have motivated the attention in the expansion of alternatives for fossil based fuels. Biomass has been recognized as a capable resource because it is plentifully available and in principle carbon dioxide neutral. Present study focuses on utilization date seeds oil for synthesizing high value fuels formulations such as green diesel and jet fuel. The hydrodeoxygenation of date seeds oil occurred to be highly efficient at following operating conditions temperature 300°C pressure 10bar with continuous stirring at 500 rpm. Products characterization revealed the efficiency of hydrodeoxygenation by formation of linear hydrocarbons (paraffin) in larger fraction. Based on the type of components in product oil it was calculated that maximum fraction lies within the range of green diesel 72.78 % then jet fuel 28.25 % by using Pt/C catalyst. It can be concluded that waste date seeds oil has potential to be used for obtaining high value products.

Keywords: date seeds, hydrodeoxygenation, paraffin, deoxygenation

Procedia PDF Downloads 264
980 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis

Authors: K. Rana, H.A.Saeed, S. Zahir

Abstract:

Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.

Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis

Procedia PDF Downloads 373
979 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: D. Ramajo, S. Corzo, M. Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow

Procedia PDF Downloads 468
978 Use of Benin Laterites for the Mix Design of Structural Concrete

Authors: Yemalin D. Agossou, Andre Lecomte, Remi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil

Abstract:

This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step, concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is, therefore, possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.

Keywords: laterites, aggregates, concretes, mix design, mechanical properties

Procedia PDF Downloads 159
977 Control of Fungal Growth in Sweet Orange and Mango Juices by Justica flava and Afromomum melegueta Extracts

Authors: Adferotimi Banso

Abstract:

A laboratory investigation was conducted to determine the effect of Justica flava and Aframonium melegueta on the growth of Aspergillus niger, Rhizopus stolonifer and Fusarium species in sweet orange and mango juices. Aqueous extract (3%v/v) of Justica flava and Aframonium melegueta reduced the growth of the fungi, a combination of 2% (v/v) each of Justica flava and Aframonium melegueta extracts reduced the growth better. Partial purification of aqueous extracts of Justica flava and Aframonium melegueta showed that ethyl acetate fraction of the extracts exhibited the highest level of inhibition of growth of the test fungi compared with diethyl ether and n-hexane fractions. The results suggest that extracts of Justica flava and Aframonium melegueta may be important substitutes for conventional chemical preservatives in the processing of fruit juices.

Keywords: aqueous, fraction, mango, orange, purification, sweet

Procedia PDF Downloads 350