Search results for: stock price crash
1786 Executive Stock Options, Business Ethics and Financial Reporting Quality
Authors: Philemon Rakoto
Abstract:
This paper tests the improvement of financial reporting quality when firms award stock options to their executives. The originality of this study is that we introduce the moderating effect of business ethics in the model. The sample is made up of 116 Canadian high-technology firms with available data for the fiscal year ending in 2012. We define the quality of financial reporting as the value relevance of accounting information as developed by Ohlson. Our results show that executive stock option award alone does not improve the quality of financial reporting. Rather, the quality improves when a firm awards stock options to its executives and investors perceive that the level of business ethics in that firm is high.Keywords: business ethics, Canada, high-tech firms, stock options, value relevance
Procedia PDF Downloads 4871785 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 951784 Synthesis of Biolubricant Base Stock from Palm Methyl Ester
Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris
Abstract:
The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties
Procedia PDF Downloads 4451783 The Impact of Reshuffle in Indonesian Working Cabinet Volume II to Abnormal Return and Abnormal Trading Activity of Companies Listed in the Jakarta Islamic Index
Authors: Fatin Fadhilah Hasib, Dewi Nuraini, Nisful Laila, Muhammad Madyan
Abstract:
A big political event such as Cabinet reshuffle mostly can affect the stock price positively or negatively, depend on the perception of each investor and potential investor. This study aims to analyze the movement of the market and trading activities which respect to an event using event study method. This method is used to measure the movement of the stock exchange in which abnormal return can be obtained by investor related to the event. This study examines the differences of reaction on abnormal return and trading volume activity from the companies listed in the Jakarta Islamic Index (JII), before and after the announcement of the Cabinet Work Volume II on 27 July 2016. The study was conducted in observation of 21 days in total which consists of 10 days before the event and 10 days after the event. The method used in this study is event study with market adjusted model method that observes market reaction to the information of an announcement or publicity events. The Results from the study showed that there is no significant negative nor positive reaction at the abnormal return and abnormal trading before and after the announcement of the cabinet reshuffle. It is indicated by the results of statistical tests whose value not exceeds the level of significance. Stock exchange of the JII just reflects from the previous stock prices without reflecting the information regarding to the Cabinet reshuffle event. It can be concluded that the capital market is efficient with a weak form.Keywords: abnormal return, abnormal trading volume activity, event study, political event
Procedia PDF Downloads 2931782 Price Promotions and Inventory Decisions
Authors: George Hadjinicola, Andreas Soteriou
Abstract:
This paper examines the relationship between the number of price promotions that a firm should conduct per year and the level of safety stocks that the firm should maintain. Price promotions result in temporary sales increases, which affect the operations function through (1) an increase in the quantities demanded and (2) an increase in safety stocks required to maintain the desired service level. We propose a modeling framework where both price promotions and improved service levels, operationalized through higher safety stocks, can affect sales. We treat the annual number of promotions as a decision variable. We identify market conditions where the operations function, through improved safety stocks, can complement price promotions or even play the leading role in sales increases.Keywords: price promotions, safety stocks, marketing/operations interface, mathematical model
Procedia PDF Downloads 951781 Causes of Road Crashes Among Students Attending Schools in Huye District and Kigali City
Authors: Ami Nkumbuye
Abstract:
Background: Every year 1.3 million people die due to Road crashes, according to the Global status report. Road crashes remain the greatest killer aged between 15-29 years. Young people are paying an unacceptable price for their own safer mobility. 23,498 students attending class daily from home crossing the roads of 3 districts Kigali and Southern province is showing a similar trend with 40320 cross road daily. As most of them don't have any idea about the safety, they should have when they are crossing roads and traffic rules and signs as well. Despite the high number of mortality related to road crashes in Rwanda, we don't have any approved calendar to teach young people road safety as the most affected age group. Objective: The objective of this study was to identify the causes of road crashes and the outcome of victims after being involved in road crashes over a period of two years, from January 2020 to December 2021, in Huye district and Kigali City. Methods: A retrospective descriptive study with open questions and then data analysis, students were identified from 15 schools in Kigali City and Southern Province and through the Local Action Project supported by Global Youth Coalition for Road Safety and Youth for Road Safety (YOURS), students asked about the cause of road crashes through open and closed question and data analyzed. Result: There were 354 students from 15 schools: 198 males and 156 females. Their age ranged from 10 to 25 years. The commonest cause of road crashes among students attending schools daily was: high speed, lack of education on safe behavior on the road, drinking and driving, and poor road infrastructures, with 47%, 32%, 13% and 8 %, respectively. The hospital admission after road crashes for the victims was 32.3%. In most scenes where road crashes occur, students report that they didn't see any person who could provide post-crash care until the ambulance came, in some cases, resulted in bad outcomes for the victims after road crashes. Conclusion: This study revealed that high speed and lack of education n road safety are the major cause of road crashes among young people in Rwanda. If local Non-Governmental Organization and Decision makers work on these issues like never before, we can see a decrease in road crash among young people and adult as well. We would like to give a recommendation to two institutions: the first is the Rwanda National Police Traffic department to set 30km/m as the maximum speed limit in City and near schools. The second is for the Ministry of Education to put Road Safety and Post Crash Care curricula in both Primary and Secondary schools.Keywords: road safety, post-crash care, young people, students
Procedia PDF Downloads 901780 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 3021779 Co-Integration Model for Predicting Inflation Movement in Nigeria
Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi
Abstract:
The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).Keywords: economic, inflation, model, series
Procedia PDF Downloads 2441778 A Study on Characteristics of Hedonic Price Models in Korea Based on Meta-Regression Analysis
Authors: Minseo Jo
Abstract:
The purpose of this paper is to examine the factors in the hedonic price models, that has significance impact in determining the price of apartments. There are many variables employed in the hedonic price models and their effectiveness vary differently according to the researchers and the regions they are analysing. In order to consider various conditions, the meta-regression analysis has been selected for the study. In this paper, four meta-independent variables, from the 65 hedonic price models to analysis. The factors that influence the prices of apartments, as well as including factors that influence the prices of apartments, regions, which are divided into two of the research performed, years of research performed, the coefficients of the functions employed. The covariance between the four meta-variables and p-value of the coefficients and the four meta-variables and number of data used in the 65 hedonic price models have been analyzed in this study. The six factors that are most important in deciding the prices of apartments are positioning of apartments, the noise of the apartments, points of the compass and views from the apartments, proximity to the public transportations, companies that have constructed the apartments, social environments (such as schools etc.).Keywords: hedonic price model, housing price, meta-regression analysis, characteristics
Procedia PDF Downloads 4021777 Structural Breaks, Asymmetric Effects and Long Memory in the Volatility of Turkey Stock Market
Authors: Serpil Türkyılmaz, Mesut Balıbey
Abstract:
In this study, long memory properties in volatility of Turkey Stock Market are being examined through the FIGARCH, FIEGARCH and FIAPARCH models under different distribution assumptions as normal and skewed student-t distributions. Furthermore, structural changes in volatility of Turkey Stock Market are investigated. The results display long memory property and the presence of asymmetric effects of shocks in volatility of Turkey Stock Market.Keywords: FIAPARCH model, FIEGARCH model, FIGARCH model, structural break
Procedia PDF Downloads 2911776 Assessing the Influence of Chinese Stock Market on Indian Stock Market
Authors: Somnath Mukhuti, Prem Kumar Ghosh
Abstract:
Background and significance of the study Indian stock market has undergone sudden changes after the current China crisis in terms of turnover, market capitalization, share prices, etc. The average returns on equity investment in both markets have more than three and half times after global financial crisis owing to the development of industrial activity, corporate sectors development, enhancement in global consumption, change of global financial association and fewer imports from developed countries. But the economic policies of both the economies are far different, that is to say, where Indian economy maintaining a conservative policy, Chinese economy maintaining an aggressive policy. Besides this, Chinese economy recently lowering its currency for increasing mysterious growth but Indian does not. But on August 24, 2015 Indian stock market and world stock markets were fall down due to the reason of Chinese stock market. Keeping in view of the above, this study seeks to examine the influence of Chinese stock on Indian stock market. Methodology This research work is based on daily time series data obtained from yahoo finance database between 2009 (April 1) to 2015 (September 28). This study is based on two important stock markets, that is, Indian stock market (Bombay Stock Exchange) and Chinese stock market (Shanghai Stock Exchange). In the course of analysis, the daily raw data were converted into natural logarithm for minimizing the problem of heteroskedasticity. While tackling the issue, correlation statistics, ADF and PP unit root test, bivariate cointegration test and causality test were used. Major findings Correlation statistics show that both stock markets are associated positively. Both ADF and PP unit root test results demonstrate that the time series data were not normal and were not stationary at level however stationary at 1st difference. The bivariate cointegration test results indicate that the Indian stock market was associated with Chinese stock market in the long-run. The Granger causality test illustrates there was a unidirectional causality between Indian stock market and Chinese stock market. Concluding statement The empirical results recommend that India’s stock market was not very much dependent on Chinese stock market because of Indian economic conservative policies. Nevertheless, Indian stock market might be sturdy if Indian economic policies are changed slightly and if increases the portfolio investment with Chinese economy. Indian economy might be a third largest economy in 2030 if India increases its portfolio investment and trade relations with both Chinese economy and US economy.Keywords: Indian stock market, China stock market, bivariate cointegration, causality test
Procedia PDF Downloads 3781775 Foreign Exchange Volatilities and Stock Prices: Evidence from London Stock Exchange
Authors: Mahdi Karazmodeh, Pooyan Jafari
Abstract:
One of the most interesting topics in finance is the relation between stock prices and exchange rates. During the past decades different stock markets in different countries have been the subject of study for researches. The volatilities of exchange rates and its effect on stock prices during the past 10 years have continued to be an attractive research topic. The subject of this study is one of the most important indices, FTSE 100. 20 firms with the highest market capitalization in 5 different industries are chosen. Firms are included in oil and gas, mining, pharmaceuticals, banking and food related industries. 5 different criteria have been introduced to evaluate the relationship between stock markets and exchange rates. Return of market portfolio, returns on broad index of Sterling are also introduced. The results state that not all firms are sensitive to changes in exchange rates. Furthermore, a Granger Causality test has been run to observe the route of changes between stock prices and foreign exchange rates. The results are consistent, to some level, with the previous studies. However, since the number of firms is not large, it is suggested that a larger number of firms being used to achieve the best results. However results showed that not all firms are affected by foreign exchange rates changes. After testing Granger Causality, this study found out that in some industries (oil and gas, pharmaceuticals), changes in foreign exchange rate will not cause any changes in stock prices (or vice versa), however, in banking sector the situation was different. This industry showed more reaction to these changes. The results are similar to the ones with Richards and Noel, where a variety of firms in different industries were evaluated.Keywords: stock prices, foreign exchange rate, exchange rate exposure, Granger Causality
Procedia PDF Downloads 4441774 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market
Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani
Abstract:
In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial results.Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)
Procedia PDF Downloads 3591773 Effectiveness of Variable Speed Limit Signs in Reducing Crash Rates on Roadway Construction Work Zones in Alaska
Authors: Osama Abaza, Tanay Datta Chowdhury
Abstract:
As a driver's speed increases, so do the probability of an incident and likelihood of injury. The presence of equipment, personnel, and a changing landscape in construction zones create greater potential for incident. This is especially concerning in Alaska, where summer construction activity, coinciding with the peak annual traffic volumes, cannot be avoided. In order to reduce vehicular speeding in work zones, and therefore the probability of crash and incident occurrence, variable speed limit (VSL) systems can be implemented in the form of radar speed display trailers since the radar speed display trailers were shown to be effective at reducing vehicular speed in construction zones. Allocation of VSL not only help reduce the 85th percentile speed but also it will predominantly reduce mean speed as well. Total of 2147 incidents along with 385 crashes occurred only in one month around the construction zone in the Alaska which seriously requires proper attention. This research provided a thorough crash analysis to better understand the cause and provide proper countermeasures. Crashes were predominantly recoded as vehicle- object collision and sideswipe type and thus significant amount of crashes fall in the group of no injury to minor injury type in the severity class. But still, 35 major crashes with 7 fatal ones in a one month period require immediate action like the implementation of the VSL system as it proved to be a speed reducer in the construction zone on Alaskan roadways.Keywords: speed, construction zone, crash, severity
Procedia PDF Downloads 2511772 Management Accounting Techniques of Companies Listed on the Stock Exchange in Thailand
Authors: Prateep Wajeetongratana
Abstract:
The objectives of the research were to examine that how management accounting techniques were perceived and used by companies listed on the stock exchange and to investigate similarities or differences of management accounting practices between companies listed on the stock exchange and Thai SMEs. Descriptive and inferential statistics were employed. The finding found that almost all of the companies used traditional management accounting techniques more than advanced management accounting techniques. Four management accounting techniques having no significant association with business characteristic were standard costing, job order costing, process costing. The barriers that Thai SMEs encountered were a lack of proper accounting system and the insufficient knowledge in management accounting of the accountants. The comparison results revealed that both companies listed on the stock exchange and Thai SMEs used traditional management accounting techniques more than advanced techniques.Keywords: companies listed on the stock exchange, financial budget, management accounting, operating budget
Procedia PDF Downloads 3831771 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network
Authors: Frankie Burgos, Emely Munar, Conrado Basa
Abstract:
This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading
Procedia PDF Downloads 2971770 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 501769 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks
Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang
Abstract:
How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.Keywords: financial bubble detection, future return, forecasting, pairs trading, preferred stocks
Procedia PDF Downloads 3681768 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques
Authors: Ved Kulkarni, Karthik Kini
Abstract:
This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.Keywords: data mining, language processing, artificial neural networks, sentiment analysis
Procedia PDF Downloads 171767 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: real estate price, least-square, grey correlation, macroeconomics
Procedia PDF Downloads 1981766 The Effectiveness of Synthesizing A-Pillar Structures in Passenger Cars
Authors: Chris Phan, Yong Seok Park
Abstract:
The Toyota Camry is one of the best-selling cars in America. It is economical, reliable, and most importantly, safe. These attributes allowed the Camry to be the trustworthy choice when choosing dependable vehicle. However, a new finding brought question to the Camry’s safety. Since 1997, the Camry received a “good” rating on its moderate overlap front crash test through the Insurance Institute of Highway Safety. In 2012, the Insurance Institute of Highway Safety introduced a frontal small overlap crash test into the overall evaluation of vehicle occupant safety test. The 2012 Camry received a “poor” rating on this new test, while the 2015 Camry redeemed itself with a “good” rating once again. This study aims to find a possible solution that Toyota implemented to reduce the severity of a frontal small overlap crash in the Camry during a mid-cycle update. The purpose of this study is to analyze and evaluate the performance of various A-pillar shapes as energy absorbing structures in improving passenger safety in a frontal crash. First, A-pillar structures of the 2012 and 2015 Camry were modeled using CAD software, namely SolidWorks. Then, a crash test simulation using ANSYS software, was applied to the A-pillars to analyze the behavior of the structures in similar conditions. Finally, the results were compared to safety values of cabin intrusion to determine the crashworthy behaviors of both A-pillar structures by measuring total deformation. This study highlights that it is possible that Toyota improved the shape of the A-pillar in the 2015 Camry in order to receive a “good” rating from the IIHS safety evaluation once again. These findings can possibly be used to increase safety performance in future vehicles to decrease passenger injury or fatality.Keywords: A-pillar, Crashworthiness, Design Synthesis, Finite Element Analysis
Procedia PDF Downloads 1191765 An Application of the Single Equation Regression Model
Authors: S. K. Ashiquer Rahman
Abstract:
Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.Keywords: price, domestic output, GNP, trend variable, wildcat activity
Procedia PDF Downloads 621764 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium
Authors: Janne Engblom, Elias Oikarinen
Abstract:
The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.Keywords: dynamic model, panel data, cross-sectional dependence, interaction model
Procedia PDF Downloads 2511763 Reasons of Change in Security Prices and Price Volatility: An Analysis of the European Carbon Futures Market
Authors: Boulis M. Ibrahim, Iordanis A. Kalaitzoglou
Abstract:
A micro structural pricing model is proposed in which price components account for learning by incorporating changing expectations of the trading intensity and the risk level of incoming trades. An analysis of European carbon futures transactions finds expected trading intensity to increase the information component and decrease the liquidity component of price changes, but at different rates. Among the results, the expected persistence in trading intensity explains the majority of the auto correlations in the level and the conditional volatility of price changes, helps predict hourly patterns in the bid–ask spread and differentiates between the impact of buy versus sell and continuing versus reversing trades.Keywords: CO2 emission allowances, market microstructure, duration, price discovery
Procedia PDF Downloads 4071762 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation
Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw
Abstract:
This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia
Procedia PDF Downloads 1601761 An Analysis of Oil Price Changes and Other Factors Affecting Iranian Food Basket: A Panel Data Method
Authors: Niloofar Ashktorab, Negar Ashktorab
Abstract:
Oil exports fund nearly half of Iran’s government expenditures, since many years other countries have been imposed different sanctions against Iran. Sanctions that primarily target Iran’s key energy sector have harmed Iran’s economy. The strategic effects of sanctions might be reduction as Iran adjusts to them economically. In this study, we evaluate the impact of oil price and sanctions against Iran on food commodity prices by using panel data method. Here, we find that the food commodity prices, the oil price and real exchange rate are stationary. The results show positive effect of oil price changes, real exchange rate and sanctions on food commodity prices.Keywords: oil price, food basket, sanctions, panel data, Iran
Procedia PDF Downloads 3561760 Relationship between Independence Directors and Performance of Firms During Financial Crisis
Authors: Gladie Lui
Abstract:
The global credit crisis of 2008 aroused renewed interest in the effectiveness of corporate governance mechanisms to safeguard investor interests. In this paper, we measure the effect of the crisis from 2008 to 2009 on the stock performance of 976 Hong Kong-listed companies and examine its link to corporate governance mechanisms. It is evident that the crisis and the economic downturn affected different industries. Empirical results show that firms with an independent board and a high concentration of ownership and management ownership had lower abnormal stock returns, but a lower price volatility during the global financial crisis. These results highlight that no single corporate governance mechanism is fit for all types of financial crises and time frames. To strengthen investors’ confidence in the ability of companies to deal with such swift financial catastrophes, companies should enhance the dynamism and responsiveness of their governance mechanisms in times of turbulence.Keywords: board of directors, capital market, corporate governance, financial crisis
Procedia PDF Downloads 4291759 Factors Influencing the Housing Price: Developers’ Perspective
Authors: Ernawati Mustafa Kamal, Hasnanywati Hassan, Atasya Osmadi
Abstract:
The housing industry is crucial for sustainable development of every country. Housing is a basic need that can enhance the quality of life. Owning a house is therefore the main aim of individuals. However, affordability has become a critical issue towards homeownership. In recent years, housing price in the main cities has increased tremendously to unaffordable level. This paper investigates factors influencing the housing price from developer’s perspective and provides recommendation on strategies to tackle this issue. Online and face-to-face survey was conducted on housing developers operating in Penang, Malaysia. The results indicate that (1) location; (2) macroeconomics factor; (3) demographic factors; (4) land/zoning and; (5) industry factors are the main factors influencing the housing price. This paper contributes towards better understanding on developers’ view on how the housing price is determined and form a basis for government to help tackle the housing affordability issue.Keywords: factors influence, house price, housing developers, Malaysia
Procedia PDF Downloads 3961758 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 971757 Understanding the Influence of Sensory Attributes on Wine Price
Authors: Jingxian An, Wei Yu
Abstract:
The commercial value (retail price) of wine is mostly determined by the wine quality, ageing potential, and oak influence. This paper reveals that wine quality, ageing potential, and oak influence are favourably correlated, hence positively influencing the commercial value of Pinot noir wines. Oak influence is the most influential of these three sensory attributes on the price set by wine traders and estimated by experienced customers. In the meanwhile, this study gives winemakers with chemical instructions for raising total phenolics, which can improve wine quality, ageing potential, and oak influence, all of which can increase a wine’s economic worth.Keywords: retail price, ageing potential, wine quality, oak influence
Procedia PDF Downloads 134