Search results for: specific emitter identification
10122 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 14010121 Acoustic Analysis for Comparison and Identification of Normal and Disguised Speech of Individuals
Authors: Surbhi Mathur, J. M. Vyas
Abstract:
Although the rapid development of forensic speaker recognition technology has been conducted, there are still many problems to be solved. The biggest problem arises when the cases involving disguised voice samples come across for the purpose of examination and identification. Such type of voice samples of anonymous callers is frequently encountered in crimes involving kidnapping, blackmailing, hoax extortion and many more, where the speaker makes a deliberate effort to manipulate their natural voice in order to conceal their identity due to the fear of being caught. Voice disguise causes serious damage to the natural vocal parameters of the speakers and thus complicates the process of identification. The sole objective of this doctoral project is to find out the possibility of rendering definite opinions in cases involving disguised speech by experimentally determining the effects of different disguise forms on personal identification and percentage rate of speaker recognition for various voice disguise techniques such as raised pitch, lower pitch, increased nasality, covering the mouth, constricting tract, obstacle in mouth etc by analyzing and comparing the amount of phonetic and acoustic variation in of artificial (disguised) and natural sample of an individual, by auditory as well as spectrographic analysis.Keywords: forensic, speaker recognition, voice, speech, disguise, identification
Procedia PDF Downloads 36910120 Identification and Characterization of Inhibitors of Epoxide Hydrolase from Trichoderma reesei
Authors: Gabriel S. De Oliveira, Patricia P. Adriani, Christophe Moriseau, Bruce D. Hammock, Felipe S. Chambergo
Abstract:
Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have high biotechnological interest for the drug design and chemistry transformation for industries. In this study, we describe the identification of substrates and inhibitors of epoxide hydrolase enzyme from the filamentous fungus Trichoderma reesei (TrEH), and these inhibitors showed the fungal growth inhibitory activity. We have used the cloned enzyme and expressed in E. coli to develop the screening in the library of fluorescent substrates with the objective of finding the best substrate to be used in the identification of good inhibitors for the enzyme TrEH. The substrate (3-phenyloxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester showed the highest specific activity and was chosen for the next steps of the study. The inhibitors screening was performed in the library with more than three thousand molecules and we could identify the 6 best inhibitors. The IC50 of these molecules were determined in nM and all the best inhibitors have urea or amide in their structure, because It has been recognized that these groups fit well in the hydrolase catalytic pocket of the epoxide hydrolases. Then the growth of T. reesei in PDA medium containing these TrEH inhibitors was tested, and fungal growth inhibition activity was demonstrated with more than 60% of inhibition of fungus growth in the assay with the TrEH inhibitor with the lowest IC50. Understanding how this EH enzyme from T. reesei responds to inhibitors may contribute for the study of fungal metabolism and drug design against pathogenic fungi.Keywords: epoxide hydrolases, fungal growth inhibition, inhibitor, Trichoderma reesei
Procedia PDF Downloads 20210119 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies
Authors: Rebecca Angeles
Abstract:
This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.Keywords: environmental sustainability, radio frequency identification, technology-organization-environment framework, RFID system implementation, case study, content analysis
Procedia PDF Downloads 44910118 Influencer Marketing, Fan Satisfaction, Team Identification and Purchase Intention and Different Effects of Influencer Marketing: Influencer’s Personal Attributes and Their Add-value to Baseball Games
Authors: Shih-Ting Fu
Abstract:
This study aimed to investigate the influence of influencer marketing on fan satisfaction, purchase intention, and team identification. The research employed a questionnaire survey targeting the Chinese Professional Baseball League (CPBL). The sample included 205 participants, encompassing both existing CPBL fans and individuals with no prior baseball viewing habits. The survey assessed the impact of influencer marketing on participants' knowledge, attitudes, and behaviors related to the CPBL. Additionally, it evaluated team identification, fan satisfaction, and purchase intention. Data analysis using SPSS software aimed to identify correlations and effects among the variables. Findings revealed that influencer marketing has a significant positive impact on fan satisfaction, purchase intention, and team identification. Notably, further analysis indicated that the personal characteristics and charisma of influencers significantly influenced fans' perceptions, leading to increased purchase intention and satisfaction. This effect was even stronger than the influence of influencers' expertise and information dissemination regarding sports events or products.Keywords: influencer marketing, fan satisfaction, team identification, purchase intention, Chinese professional baseball league (CPBL)
Procedia PDF Downloads 3810117 Identification of Anaplasma Species in Cattle of Khouzestan Province from Iran by PCR
Authors: Ali Bagherpour
Abstract:
The aim of this study was to determinate the variety of Anaplasma species among cattle of Khuzestan province, Iran. From April 2013 to June 2013, a total of 200 blood samples were collected via the jugular vein from healthy cattle (100), randomly. The extracted DNA from blood cells were amplified by Anaplasma-all primers, which amplify an approximately 1468bp DNA fragment from region of 16S rRNA gene from various members of the genus Anaplasma. For raising the test sensivity, the PCR products were amplified with the primers, which were designed from the region flanked by the first primers. The amplified nested PCR product had an expected PCR product with 345 nucleotides in length. 44 out of 100 cattle blood samples were Anaplasma spp. positive by first PCR and nested PCR. All cattle positive samples were further analyzed for the presence of A. centrale, A. bovis and A. phagocytophilum by specific nested PCR. A.phagocytophilum was identified by specific nested PCR in 3% of cattle blood samples. The extracted DNA from positive Anaplasma spp. samples were amplified by Anaplasma marginale/ovis specific primers, which amplify an approximately 866bp DNA fragment from region of msp4 gene. 41 out of 100 cattle blood samples (41%) were positive for Anaplasma marginale and Anaplasma ovis, respectively.Keywords: Iran, Khuzestan, Anaplasma species, Cattle, A. marginale, A. ovis, A. phagocytophilum, PCR
Procedia PDF Downloads 50110116 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan
Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas
Abstract:
The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1
Procedia PDF Downloads 16910115 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks
Authors: Kais Manai
Abstract:
The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.Keywords: nuclear emulsion, particle identification, tracking, neural network
Procedia PDF Downloads 50810114 Isolation and Identification of Diacylglycerol Acyltransferase Type-2 (GAT2) Genes from Three Egyptian Olive Cultivars
Authors: Yahia I. Mohamed, Ahmed I. Marzouk, Mohamed A. Yacout
Abstract:
Aim of this work was to study the genetic basis for oil accumulation in olive fruit via tracking DGAT2 (Diacylglycerol acyltransferase type-2) gene in three Egyptian Origen Olive cultivars namely Toffahi, Hamed and Maraki using molecular marker techniques and bioinformatics tools. Results illustrate that, firstly: specific genomic band of Maraki cultivars was identified as DGAT2 (Diacylglycerol acyltransferase type-2) and identical for this gene in Olea europaea with 100 % of similarity. Secondly, differential genomic band of Maraki cultivars which produced from RAPD fingerprinting technique reflected predicted distinguished sequence which identified as DGAT2 (Diacylglycerol acyltransferase type-2) in Fragaria vesca subsp. Vesca with 76% of sequential similarity. Third and finally, specific genomic specific band of Hamed cultivars was indentified as two fragments, 1-Olea europaea cultivar Koroneiki diacylglycerol acyltransferase type 2 mRNA, complete cds with two matches regions with 99% or 2-PREDICTED: Fragaria vesca subsp. vesca diacylglycerol O-acyltransferase 2-like (LOC101313050), mRNA with 86% of similarity.Keywords: Olea europaea, fingerprinting, diacylglycerol acyltransferase type-2 (DGAT2), Egypt
Procedia PDF Downloads 50310113 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 17110112 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 30110111 Risk Identification of Investment Feasibility in Indonesia’s Toll Road Infrastructure Investment
Authors: Christo Februanto Putra
Abstract:
This paper presents risk identification that affects investment feasibility on toll road infrastructure in Indonesia using qualitative methods survey based on the expert practitioner in investor, contractor, and state officials. The problems on infrastructure investment in Indonesia, especially on KPBU model contract, is many risk factors in the investment plan is not calculated in detail thoroughly. Risk factor is a value used to provide an overview of the risk level assessment of an event which is a function of the probability of the occurrence and the consequences of the risks that arise. As results of the survey which is to show which risk factors impacts directly to the investment feasibility and rank them by their impacts on the investment.Keywords: risk identification, indonesia toll road, investment feasibility
Procedia PDF Downloads 28010110 Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions
Authors: Jyh-Cherng Chen, Yi-Jie Lin
Abstract:
This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development.Keywords: alkali fusion, hydrothermal, fly ash, zeolite
Procedia PDF Downloads 17610109 A Knowledge-Based Development of Risk Management Approaches for Construction Projects
Authors: Masoud Ghahvechi Pour
Abstract:
Risk management is a systematic and regular process of identifying, analyzing and responding to risks throughout the project's life cycle in order to achieve the optimal level of elimination, reduction or control of risk. The purpose of project risk management is to increase the probability and effect of positive events and reduce the probability and effect of unpleasant events on the project. Risk management is one of the most fundamental parts of project management, so that unmanaged or untransmitted risks can be one of the primary factors of failure in a project. Effective risk management does not apply to risk regression, which is apparently the cheapest option of the activity. However, the main problem with this option is the economic sensitivity, because what is potentially profitable is by definition risky, and what does not pose a risk is economically interesting and does not bring tangible benefits. Therefore, in relation to the implemented project, effective risk management is finding a "middle ground" in its management, which includes, on the one hand, protection against risk from a negative direction by means of accurate identification and classification of risk, which leads to analysis And it becomes a comprehensive analysis. On the other hand, management using all mathematical and analytical tools should be based on checking the maximum benefits of these decisions. Detailed analysis, taking into account all aspects of the company, including stakeholder analysis, will allow us to add what will become tangible benefits for our project in the future to effective risk management. Identifying the risk of the project is based on the theory that which type of risk may affect the project, and also refers to specific parameters and estimating the probability of their occurrence in the project. These conditions can be divided into three groups: certainty, uncertainty, and risk, which in turn support three types of investment: risk preference, risk neutrality, specific risk deviation, and its measurement. The result of risk identification and project analysis is a list of events that indicate the cause and probability of an event, and a final assessment of its impact on the environment.Keywords: risk, management, knowledge, risk management
Procedia PDF Downloads 6810108 Human Skin Identification Using a Specific mRNA Marker at Different Storage Durations
Authors: Abla A. Ali, Heba A. Abd El Razik, Nadia A. Kotb, Amany A. Bayoumi, Laila A. Rashed
Abstract:
The detection of human skin through mRNA-based profiling is a very useful tool for forensic investigations. The aim of this study was definitive identification of human skin at different time intervals using an mRNA marker late cornified envelope gene 1C. Ten middle-aged healthy volunteers of both sexes were recruited for this study. Skin samples controlled with blood samples were taken from the candidates to test for the presence of our targeted mRNA marker. Samples were kept at dry dark conditions to be tested at different time intervals (24 hours, one week, three weeks and four weeks) for detection and relative quantification of the targeted marker by RT PCR. The targeted marker could not be detected in blood samples. The targeted marker showed the highest mean value after 24 hours (11.90 ± 2.42) and the lowest mean value (7.56 ± 2.56) after three weeks. No marker could be detected at four weeks. This study verified the high specificity and sensitivity of mRNA marker in the skin at different storage times up to three weeks under the study conditions.Keywords: human skin, late cornified envelope gene 1C, mRNA marker, time intervals
Procedia PDF Downloads 16510107 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 1310106 Managing Psychogenic Non-Epileptic Seizure Disorder: The Benefits of Collaboration between Psychiatry and Neurology
Authors: Donald Kushon, Jyoti Pillai
Abstract:
Psychogenic Non-epileptic Seizure Disorder (PNES) is a challenging clinical problem for the neurologist. This study explores the benefits of on-site collaboration between psychiatry and neurology in the management of PNES. A 3 month period at a university hospital seizure clinic is described detailing specific management approaches taken as a result of this collaboration. This study describes four areas of interest: (1. After the video EEG results confirm the diagnosis of PNES, the presentation of the diagnosis of PNES to the patient. (2. The identification of co-morbid psychiatric illness (3. Treatment with specific psychotherapeutic interventions (including Cognitive Behavioral Therapy) and psychopharmacologic interventions (primarily SSRIs) and (4. Preliminary treatment outcomes.Keywords: cognitive behavioral therapy (CBT), psychogenic non-epileptic seizure disorder (PNES), selective serotonin reuptake inhibitors (SSRIs), video electroencephalogram (VEEG)
Procedia PDF Downloads 31510105 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting
Procedia PDF Downloads 5710104 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 19310103 Linear MIMO Model Identification Using an Extended Kalman Filter
Authors: Matthew C. Best
Abstract:
Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction
Procedia PDF Downloads 59510102 An In-silico Pharmacophore-Based Anti-Viral Drug Development for Hepatitis C Virus
Authors: Romasa Qasim, G. M. Sayedur Rahman, Nahid Hasan, M. Shazzad Hosain
Abstract:
Millions of people worldwide suffer from Hepatitis C, one of the fatal diseases. Interferon (IFN) and ribavirin are the available treatments for patients with Hepatitis C, but these treatments have their own side-effects. Our research focused on the development of an orally taken small molecule drug targeting the proteins in Hepatitis C Virus (HCV), which has lesser side effects. Our current study aims to the Pharmacophore based drug development of a specific small molecule anti-viral drug for Hepatitis C Virus (HCV). Drug designing using lab experimentation is not only costly but also it takes a lot of time to conduct such experimentation. Instead in this in silico study, we have used computer-aided techniques to propose a Pharmacophore-based anti-viral drug specific for the protein domains of the polyprotein present in the Hepatitis C Virus. This study has used homology modeling and ab initio modeling for protein 3D structure generation followed by pocket identification in the proteins. Drug-able ligands for the pockets were designed using de novo drug design method. For ligand design, pocket geometry is taken into account. Out of several generated ligands, a new Pharmacophore is proposed, specific for each of the protein domains of HCV.Keywords: pharmacophore-based drug design, anti-viral drug, in-silico drug design, Hepatitis C virus (HCV)
Procedia PDF Downloads 27110101 Safety of Ports, Harbours, Marine Terminals: Application of Quantitative Risk Assessment
Authors: Dipak Sonawane, Sudarshan Daga, Somesh Gupta
Abstract:
Quantitative risk assessment (QRA) is a very precise and consistent approach to defining the likelihood, consequence and severity of a major incident/accident. A variety of hazardous cargoes in bulk, such as hydrocarbons and flammable/toxic chemicals, are handled at various ports. It is well known that most of the operations are hazardous, having the potential of damaging property, causing injury/loss of life and, in some cases, the threat of environmental damage. In order to ensure adequate safety towards life, environment and property, the application of scientific methods such as QRA is inevitable. By means of these methods, comprehensive hazard identification, risk assessment and appropriate implementation of Risk Control measures can be carried out. In this paper, the authors, based on their extensive experience in Risk Analysis for ports and harbors, have exhibited how QRA can be used in practice to minimize and contain risk to tolerable levels. A specific case involving the operation for unloading of hydrocarbon at a port is presented. The exercise provides confidence that the method of QRA, as proposed by the authors, can be used appropriately for the identification of hazards and risk assessment of Ports and Terminals.Keywords: quantitative risk assessment, hazard assessment, consequence analysis, individual risk, societal risk
Procedia PDF Downloads 8010100 Identification of Autism Spectrum Disorders in Day-Care Centres
Authors: Kenneth Larsen, Astrid Aasland, Synnve Schjølberg, Trond Diseth
Abstract:
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders emerging in early development characterized by impairment in social communication skills and a restricted, repetitive and stereotyped patterns of behavior and interests. Early identification and interventions potentially improve development and quality of life of children with ASD. Symptoms of ASD are apparent through the second year of life, yet diagnostic age are still around 4 years of age. This study explored whether symptoms associated with ASD are possible to identify in typical Norwegian day-care centers in the second year of life. Results of this study clearly indicates that most described symptoms also are identifiable by day-care staff, and that a short observation list of 5 symptoms clearly identify children with ASD from a sample of normal developing peers.Keywords: autism, early identification, day-care, screening
Procedia PDF Downloads 39510099 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
Authors: Joon-Hoon Park
Abstract:
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification
Procedia PDF Downloads 50910098 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification
Procedia PDF Downloads 32810097 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds
Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca
Abstract:
Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy
Procedia PDF Downloads 26110096 Texture Identification Using Vision System: A Method to Predict Functionality of a Component
Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran
Abstract:
Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.Keywords: diamond stylus, manufacturing process, texture identification, vision system
Procedia PDF Downloads 29110095 IT-Aided Business Process Enabling Real-Time Analysis of Candidates for Clinical Trials
Authors: Matthieu-P. Schapranow
Abstract:
Recruitment of participants for clinical trials requires the screening of a big number of potential candidates, i.e. the testing for trial-specific inclusion and exclusion criteria, which is a time-consuming and complex task. Today, a significant amount of time is spent on identification of adequate trial participants as their selection may affect the overall study results. We introduce a unique patient eligibility metric, which allows systematic ranking and classification of candidates based on trial-specific filter criteria. Our web application enables real-time analysis of patient data and assessment of candidates using freely definable inclusion and exclusion criteria. As a result, the overall time required for identifying eligible candidates is tremendously reduced whilst additional degrees of freedom for evaluating the relevance of individual candidates are introduced by our contribution.Keywords: in-memory technology, clinical trials, screening, eligibility metric, data analysis, clustering
Procedia PDF Downloads 49310094 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders
Authors: Emilie Zimet
Abstract:
During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.Keywords: identification, student selection, communication, special education, school policy, planning for intervention
Procedia PDF Downloads 4710093 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 424