Search results for: signal averaging
1615 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 2271614 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 2931613 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 5981612 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5541611 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6631610 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1561609 Embedded System of Signal Processing on FPGA: Underwater Application Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing
Procedia PDF Downloads 791608 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 1531607 Clinical Implication of Hyper-Intense Signal Thyroid Incidentaloma on Time of Flight Magnetic Resonance Angiography
Authors: Inseon Ryoo, Soo Chin Kim, Hyena Jung, Sangil Suh
Abstract:
Objectives: The purpose of this study is to evaluate the clinical significance of hyper-intense signal thyroid incidentalomas on the time of flight magnetic resonance angiography (TOF-MRA) using correlation study with ultrasound (US). Methods: We retrospectively reviewed 3,505 non-contrast TOF-MRA performed at an institution between September 2014 and May 2017. Two radiologists correlated the thyroid incidentalomas detected on TOF-MRA with US features which was obtained within three months interval between MRA and US examinations in consensus method. Results: The prevalence of hyper-intense signal thyroid nodules incidentally detected on TOF-MRA was 1.2% (43/3505). Among them, 35 people (81.4%) underwent US examinations, and total 45 hyper-intense signal thyroid nodules were detected on US exams. Of these 45 nodules, 35 nodules (72.9%) were categorized as benign (K-TIRADS category 2) on US exams. Fine needle aspiration was performed on 9 nodules according to the indications recommended by Korean Society of Thyroid Radiology. All except one high-suspicious thyroid nodule were confirmed as benign (Bethesda 2) on cytologic exams. One high-suspicious nodule on US showed a non-diagnostic result (Bethesda 1) on cytologic exam. However, this nodule collapsed after aspiration of thick colloid material. Conclusions: Our study showed that the most hyper-intense signal thyroid nodules detected on TOF-MRA were benign. Therefore, if a hyper-intense signal incidentaloma is found on TOF-MRA, further evaluation, especially invasive biopsy of the nodules could be suspended unless the patient had other symptoms or clinical factors suggesting the need for further evaluation.Keywords: incidentaloma, thyroid nodule, TOF MR angiography, ultrasound
Procedia PDF Downloads 1671606 Modeling of Digital and Settlement Consolidation of Soil under Oedomete
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3331605 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability
Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang
Abstract:
Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)
Procedia PDF Downloads 4831604 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar
Authors: Shaolin Allen Liao, Hual-Te Chien
Abstract:
Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar
Procedia PDF Downloads 3451603 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 1281602 Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3501601 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation
Procedia PDF Downloads 1531600 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection
Authors: Pradthana Sianglam, Wittaya Ngeontae
Abstract:
A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion
Procedia PDF Downloads 3631599 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 2261598 55 dB High Gain L-Band EDFA Utilizing Single Pump Source
Authors: M. H. Al-Mansoori, W. S. Al-Ghaithi, F. N. Hasoon
Abstract:
In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression.Keywords: optical amplifiers, EDFA, L-band, optical networks
Procedia PDF Downloads 3501597 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.Keywords: cross-correlation, delay estimation, signal envelope, signal processing
Procedia PDF Downloads 4851596 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 1571595 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 3971594 A Contactless Capacitive Biosensor for Muscle Activity Measurement
Authors: Charn Loong Ng, Mamun Bin Ibne Reaz
Abstract:
As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.Keywords: contactless, capacitive, biosensor, electromyography
Procedia PDF Downloads 4501593 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media
Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding
Abstract:
A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.Keywords: discrete elements, Hertzian contact, polydispersity, weakly nonlinear, wave propagation
Procedia PDF Downloads 2041592 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 4081591 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, NDT, artificial defect, ultrasonic testing
Procedia PDF Downloads 4751590 Frequency-Dependent and Full Range Tunable Phase Shifter
Authors: Yufu Yin, Tao Lin, Shanghong Zhao, Zihang Zhu, Xuan Li, Wei Jiang, Qiurong Zheng, Hui Wang
Abstract:
In this paper, a frequency-dependent and tunable phase shifter is proposed and numerically analyzed. The key devices are the dual-polarization binary phase shift keying modulator (DP-BPSK) and the fiber Bragg grating (FBG). The phase-frequency response of the FBG is employed to determine the frequency-dependent phase shift. The simulation results show that a linear phase shift of the recovered output microwave signal which depends on the frequency of the input RF signal is achieved. In addition, by adjusting the power of the RF signal, the full range phase shift from 0° to 360° can be realized. This structure shows the spurious free dynamic range (SFDR) of 70.90 dB·Hz2/3 and 72.11 dB·Hz2/3 under different RF powers.Keywords: microwave photonics, phase shifter, spurious free dynamic range, frequency-dependent
Procedia PDF Downloads 2961589 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees
Authors: Amanpreet Kaur
Abstract:
Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets
Procedia PDF Downloads 2351588 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd
Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic
Abstract:
Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization
Procedia PDF Downloads 1081587 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller
Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares
Abstract:
The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller
Procedia PDF Downloads 3661586 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA
Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu
Abstract:
The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™
Procedia PDF Downloads 520