Search results for: si- steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1715

Search results for: si- steel

1595 Comparative Study of R.C.C. Steel and Concrete Building

Authors: Mahesh Suresh Kumawat

Abstract:

Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical.

Keywords: composite beam, column, RCC column, RCC beam, shear connector, SAP 2000 software

Procedia PDF Downloads 452
1594 A Brief Review of the Axial Capacity of Circular High Strength CFST Columns

Authors: Fuat Korkut, Soner Guler

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian Standard

Procedia PDF Downloads 506
1593 Thiosemicarbazone Derived from 4-Aminoantipyrine as Corrosion Inhibitor

Authors: Ahmed A. Al-Amiery, Yasmin K. Al-Majedy, Abdul Amir H. Kadhum, Abu Bakar Mohamad

Abstract:

The efficiency of synthesized thiosemicarbazone namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide investigated as corrosion inhibitor of mild steel in 1N H2SO4 using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) in addition of scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor even at low concentration with a mean efficiency of 93%. Polarization technique and EIS were tested in different concentrations reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites and the adsorption follows the Langmuir adsorption isotherm model. SEM shows that mild steel surface is nearly perfect for mild steel which was immersed in a solution of H2SO4 with corrosion inhibitor.

Keywords: corrosion inhibitor, thiosemicarbazide, electrochemical impedance, electrochemical impedance spectroscopy

Procedia PDF Downloads 521
1592 Effect of Solution Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321

Authors: Amir Mahmoudi

Abstract:

In this investigation, AISI321 steel after welding by Shilded Metal Arc Welding (SMAW) was solution heat treated in various temperatures and times, and then was sensitizied. Results indicated, increasing of temperature in solution heat treatment raises the sensitization and creates the cavity structure in grain boundaries. Besides, in order to examine the effect of time on solution heat treatment, all samples were solution heat treated at different times and fixed temperature (1050°C). By increasing the time, more chrome carbides were created due to dissolution of delta ferrite phase and reproduce titanium carbides. Additionally, the best process for solution heat treatment for this steel was suggested.

Keywords: stainless steel, solution heat treatment, intergranular corrosion, DLEPR

Procedia PDF Downloads 521
1591 Investigation into Black Oxide Coating of 410 Grade Surgical Stainless Steel Using Alkaline Bath Treatment

Authors: K. K. Saju, A. R. Reghuraj

Abstract:

High reflectance of surgical instruments under bright light hinders the visual clarity during laparoscopic surgical procedures leading to loss of precision and device control and creates strain and undesired difficulties to surgeons. Majority of the surgical instruments are made of surgical grade steel. Instruments with a non reflective surface can enhance the visual clarity during precision surgeries. A conversion coating of black oxide has been successfully developed 410 grade surgical stainless steel .The characteristics of the developed coating suggests the application of this technique for developing 410 grade surgical instruments with minimal reflectance.

Keywords: conversion coatings, 410 stainless steel, black oxide, reflectance

Procedia PDF Downloads 455
1590 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 306
1589 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 552
1588 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 227
1587 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: pearlite, retained austenite, thermo-mechanical treatment, TRIP steel

Procedia PDF Downloads 293
1586 Effect of Segregation Pattern of Mn, Si, and C on through Thickness Microstructure and Properties of Hot Rolled Steel

Authors: Waleed M. Al-Othman, Hamid Bayati, Abdullah Al-Shahrani, Haitham Al-Jabr

Abstract:

Pearlite bands commonly form parallel to the surface of the hot rolled steel and have significant influence on the properties of the steel. This study investigated the correlation between segregation pattern of Mn, Si, C and formation of the pearlite bands in hot rolled Gr 60 steel plate. Microstructural study indicated formation of a distinguished thick band at centerline of the plate with number of parallel bands through thickness of the steel plate. The thickness, frequency, and continuity of the bands are reduced from mid-thickness toward external surface of the steel plate. Analysis showed a noticeable increase of C, Si and Mn levels within the bands. Such alloying segregation takes place during metal solidification. EDS analysis verified presence of particles rich in Ti, Nb, Mn, C, N, within the bands. Texture analysis by Electron Backscatter Detector (EBSD) indicated the grains size/misorientation can noticeably change within the bands. Effect of banding on through-thickness properties of the steel was examined by carrying out microhardness, toughness and tensile tests. Results suggest the Mn and C contents are changed in sinusoidal pattern through thickness of the hot rolled plate and pearlite bands are formed at the peaks of this sinusoidal segregation pattern. Changes in grain size/misorientation, formation of highly alloyed particles, and pearlite within these bands, facilitate crack formation along boundaries of these bands.

Keywords: pearlite band, alloying segregation, hot rolling, Ti, Nb, N, C

Procedia PDF Downloads 137
1585 Electrochemical Corrosion of Steels in Distillery Effluent

Authors: A. K. Singh, Chhotu Ram

Abstract:

The present work relates to the corrosivity of distillery effluent and corrosion performance of mild steel and stainless steels SS304L, SS316L, and 2205. The report presents the results and conclusions drawn on the basis of (i) electrochemical polarization tests performed in distillery effluent and laboratory prepared solutions having composition similar to that of the effluent (ii) the surface examination by scanning electron microscope (SEM) of the corroded steel samples. It is observed that pH and presence of chloride, phosphate, calcium, nitrite and nitrate in distillery effluent enhance corrosion, whereas presence of sulphate and potassium inhibits corrosion. Among the materials tested, mild steel is observed to experience maximum corrosion followed by stainless steels SS304L, SS316L, and 2205.

Keywords: corrosion, distillery effluent, electrochemical polarization, steel

Procedia PDF Downloads 409
1584 The Effects of Gas Metal Arc Welding Parameters on the Corrosion Behaviour of Austenitic Stainless Steel Immersed in Aqueous Sodium Hydroxide

Authors: I. M. B. Omiogbemi, D. S. Yawas, I. M. Dagwa, F. G. Okibe

Abstract:

This work present the effects of some gas metal arc welding parameters on the corrosion behavior of austenitic stainless steel, exposed to 0.5M sodium hydroxide at ambient temperatures (298K) using conventional weight loss determination, together with surface morphology evaluation by scanning electron microscopy and the application of factorial design of experiment to determine welding conditions which enhance the integrity of the welded stainless steel. The welding variables evaluated include speed, voltage and current. Different samples of the welded stainless steels were immersed in the corrosion environment for 8, 16, 24, 32 and 40 days and weight loss determined. From the results, it was found that increase in welding current and speed at constant voltage gave the optimum performance of the austenitic stainless steel in the environment. At a of speed 40cm/min, 110Amp current and voltage of 230 volt the welded stainless steel showed only a 0.0015mg loss in weight after 40 days. Pit-like openings were observed on the surface of the metals indicating corrosion but were minimal at the optimum conditions. It was concluded from the research that relatively high welding speed and current at a constant voltage gives a good welded austenitic stainless steel with better integrity.

Keywords: welding, current, speed, austenitic stainless steel, sodium hydroxide

Procedia PDF Downloads 318
1583 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.

Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS

Procedia PDF Downloads 196
1582 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 375
1581 Earthquake Resistant Sustainable Steel Green Building

Authors: Arup Saha Chaudhuri

Abstract:

Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.

Keywords: steel building, green and sustainable, earthquake resistant, EBF system

Procedia PDF Downloads 349
1580 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement

Authors: Can Otuzbir

Abstract:

It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.

Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP

Procedia PDF Downloads 128
1579 Research of Interaction between Layers of Compressed Composite Columns

Authors: Daumantas Zidanavicius

Abstract:

In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.

Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution

Procedia PDF Downloads 124
1578 Effect of Steel Slag on Cold Bituminous Emulsion Mix

Authors: Amol Rakhunde, Namdeo Hedaoo

Abstract:

Cold bituminous emulsion mixes (CBEM) are preferred due to their low cost for the construction of low volume roads in India. Due to the low strength of CBEM’s, the strength is generally increased by the addition of Ordinary Portland Cement (OPC) and hydrated lime. To improve the performance of CBEM’s, the use of industrial waste material is also an alternative. Steel slag is by product of steel industry which is sustainable construction material. Due to limited modes of practice of utilization steel slag, huge amount of steel slag dumped in yards of each steel industry and engaging of important agricultural land and gave pollution to whole environment. The effective use of steel slag as additives in CBEM’s has ultimate benefits such improvement in strength of CBEM’s, waste disposal steel slag, saving natural aggregate and lowering cost of roadways. Studies carried out in the past have shown a significant improvement in the strength of CBEM’s prepared with the replacement of natural aggregate with industrial waste materials such as fly ash and ground granulated blast furnace slag. In this study, effect of modified mix which is mixes prepared with steel slag compared with the control mix and the mixes prepared with OPC. Experimental work was carried out on the sample of control mix, OPC mix, and modified mix. For modified mix, aggregate was replaced with steel slag by 10%, 20%, 30% and 40% of weight of aggregate of same size as of steel slag in aggregate gradation. For OPC mix, filler was replaced by 1%, 2% and 3% of weight of total aggregate with OPC. Optimum emulsion content of each mix obtained by using Marshall stability test and comparison of stability values were carried out. Marshall stability, indirect tensile strength test, and retained stability tests are performed on control mixes, OPC mixes and modified mixes. Significant improvement in Marshall stability retained stability and indirect tensile strength of modified mix compared to control mix and OPC mix.

Keywords: CBEM, indirect tensile strength test, Marshall stability test, OPC, optimum emulsion content, retained stability test, steel slag

Procedia PDF Downloads 155
1577 Sustainable Housing in Steel: Prospects for Future World of Developing Countries

Authors: Poorva Kulkarni

Abstract:

Developing countries are having significant additions to existing population of urban areas with loads of migrants from rural areas. There is a tremendous need to provide accommodation facility to cater to rapidly growing urban population. This leads to unprecedented growth in urban areas since the temporary shelters are constructed with any available material. Architecture in a broader sense serves to humanity in terms of making life of people happy and comfortable by providing comfortable shelters. It is also the need of the time for an architect to be extremely sensitive towards nature by providing design solution of human shelters with minimum impact on the environment. The sensitive approach towards designing of housing units and provision of comfortable and affordable housing units should go hand in hand for future growth of developing countries. Steel has proved itself a versatile material in terms of strength, uniformity and ease of operation and many such other advantages. Steel can be used as the most promising material for modern construction practices. The current research paper focuses on how effectively steel can be used probably in combination with other construction material to achieve the mentioned objectives for sustainable housing. The research available on sustainable housing in steel is studied along with few case studies of buildings with the efficient use of steel providing a solution with affordability and minimum harm to the environment. The research will conclude the effective solutions exploring possibilities of use of steel for sustainable housing units. The researcher shows how the use of steel in combination with other materials for human shelters can promote sustainable housing for community living which is the need of the time.

Keywords: community living, steel, sustainable housing, urban area

Procedia PDF Downloads 227
1576 Study of the Efficiency of a Synthetic Wax for Corrosion Protection of Steel in Aggressive Environments

Authors: Laidi Babouri

Abstract:

The remarkable properties of steel, such as hardness and impact resistance, motivate their use in the automotive manufacturing industry. However, due to the very vulnerable environmental conditions of use, the steel that makes up the car body can corrode. This situation is motivating more and more automobile manufacturers to develop research to develop processes minimizing the rate of degradation of the physicomechanical properties of these materials. The present work falls within this perspective; it presents the results of a research study focused on the use of synthetic wax for the protection of steel, type XES (DC04), against corrosion in aggressive environments. The media used in this study are an acid medium with a pH=5.6, a 3% chloride medium, and a dry medium. Evaluation of the protective power of synthetic wax in different environments was carried out using mass loss techniques (immersion), completed by electrochemical techniques (stationary and transient). The results of the immersion of the steel samples, with a surface area of (1.44 cm²), in the various media, for a period of 30 days, using the immersion technique, showed high protective efficiency of synthetic wax in acidic and saline environments, with a lesser degree in a dry environment. Moreover, the study of the protective power, using electrochemical techniques, confirmed the results obtained in static mode (loss of mass), the protective efficiency of synthetic wax, against the corrosion of steel, in different environments, which reaches a maximum rate of 99.87% in a saline environment.

Keywords: corrosion, steel, industrial wax, environment, mass loss, electrochemical techniques

Procedia PDF Downloads 75
1575 The Reality of the Application of Environmental Accounting in the Iron and Steel Sector in Libya: A Case Study in the Libyan Iron and Steel Company, Misurata, Libya

Authors: Eltaib Elzarrouk E. E. Abdalmajeed

Abstract:

This research aims at shedding the light on environmental accounting, which is considered to be one of the most important areas in accounting discipline. It also studies the reality of the application of environmental accounting in the iron and steel sector in Libya. The questionnaire of this study was used for data collection from respondents who are employed in the Libyan Iron and Steel Company, Misurata – Libya (LISC). The Statistical Package for Social Sciences (SPSS) was also used for the analysis. Several important results were revealed include that the (LISC) relatively applies environmental accounting, and it faces some obstacles in conducting its application. Furthermore, the researched company realizes the importance of applying environmental accounting as a need for quality procedures. It was suggested that training courses should be held periodically to spread the awareness of environmental accounting environment. In addition, social responsibility and sustainability should be taken into consideration in the company's strategic plan.

Keywords: environment, environmental accounting, environmental accounting disclosure, The Libyan Iron and Steel Company, Misurata- Libya (LISC)

Procedia PDF Downloads 152
1574 Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, Muhd Fadhil Nuruddin, Ali Elheber Ahmed

Abstract:

Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix.

Keywords: self-compacting concrete, silica fume, steel fiber, fresh taste

Procedia PDF Downloads 574
1573 Static Strain Aging in Ferritic and Austenitic Stainless Steels

Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet

Abstract:

Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.

Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength

Procedia PDF Downloads 440
1572 Analysis of Various Factors Affecting Hardness and Content of Phases Resulting from 1030 Carbon Steel Heat Treatment Using AC3 Software

Authors: Saeid Shahraki, Mohammad Mahdi Kaekha

Abstract:

1030 steel, a kind of carbon steel used in homogenization, cold-forming, quenching, and tempering conditions, is generally utilized in small parts resisting medium stress, such as connection foundations, hydraulic cylinders, tiny gears, pins, clamps, automotive normal forging parts, camshafts, levers, pundits, and nuts. In this study, AC3 software was used to measure the effect of carbon and manganese percentage, dimensions and geometry of pieces, the type of the cooling fluid, temperature, and time on hardness and the content of 1030 steel phases. Next, the results are compared with the analytical values obtained from the Lumped Capacity Method.

Keywords: 1030Steel, AC3software, heat treatment, lumped capacity method

Procedia PDF Downloads 281
1571 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: steel structure, blast load, terrorist attacks, charge weight, damage level

Procedia PDF Downloads 364
1570 Reinforcing Fibre Reinforced Polymer (FRP) Bridge Decks with Steel Plates

Authors: M. Alpaslan Koroglu

Abstract:

Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative, and they have offered many advantages, and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel with steel plates was evaluated by means of FE analysis.

Keywords: FRP, deck, bridge, finite element

Procedia PDF Downloads 475
1569 Optimal Design of Profiled Steel Sheet for Composite Slab

Authors: Adinew Gebremeskel Tizazu

Abstract:

Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials.

Keywords: profiled sheeting, optimal cross-sectional dimensions, cold-formed profiled sheets, composite slab

Procedia PDF Downloads 23
1568 A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns

Authors: Eylem Guzel, Faruk Osmanoglu, Muhammet Kurucu

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian standard

Procedia PDF Downloads 400
1567 Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained.

Keywords: SS400 steel, circular hollow steel damper, effective size, quasi static loading, FE analysis

Procedia PDF Downloads 431
1566 Comparison of the Seismic Response of Planar Regular and Irregular Steel Frames

Authors: Robespierre Chavez, Eden Bojorquez, Alfredo Reyes-Salazar

Abstract:

This study compares the seismic response of regular and vertically irregular steel frames determined by nonlinear time history analysis and by using several sets of earthquake records, which are divided in two categories: The first category having 20 stiff-soil ground motion records obtained from the NGA database, and the second category having 30 soft-soil ground motions recorded in the Lake Zone of Mexico City and exhibiting a dominant period (Ts) of two seconds. The steel frames in both format regular and irregular were designed according to the Mexico City Seismic Design Provisions (MCSDP). The effects of irregularity throught the height on the maximum interstory drifts are estimated.

Keywords: irregular steel frames, maximum interstory drifts, seismic response, seismic records

Procedia PDF Downloads 327