Search results for: protein production
9224 Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems
Authors: Zahra Yadollahi, Marjan Motiei, Natalia Kazantseva, Petr Saha
Abstract:
Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated.Keywords: whey protein isolated, chitosan, nanoparticles, delivery system
Procedia PDF Downloads 949223 Increase Daily Production Rate of Methane Through Pasteurization Cow Dung
Authors: Khalid Elbadawi Elshafea, Mahmoud Hassan Onsa
Abstract:
This paper presents the results of the experiments to measure the impact of pasteurization cows dung on important parameter of anaerobic digestion (retention time) and measure the effect in daily production rate of biogas, were used local materials in these experiments, two experiments were carried out in two bio-digesters (1 and 2) (18.0 L), volume of the mixture 16.0-litre and the mass of dry matter in the mixture 4.0 Kg of cow dung. Pasteurization process has been conducted on the mixture into the digester 2, and put two digesters under room temperature. Digester (1) produced 268.5 liter of methane in period of 49 days with daily methane production rate 1.37L/Kg/day, and digester (2) produced 302.7-liter of methane in period of 26 days with daily methane production rate 2.91 L/Kg/day. This study concluded that the use of system pasteurization cows dung speed up hydrolysis in anaerobic process, because heat to certain temperature in certain time lead to speed up chemical reactions (transfer Protein to Amino acids, Carbohydrate to Sugars and Fat to Long chain fatty acids), this lead to reduce the retention time an therefore increase the daily methane production rate with 212%.Keywords: methane, cow dung, daily production, pasteurization, increase
Procedia PDF Downloads 3119222 Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G
Authors: Saha Saradindu, Das Payel, Somdeb BoseDasgupta
Abstract:
Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation.Keywords: mycobacteria, Protein kinase G, phosphoproteomics, necroptosis
Procedia PDF Downloads 1469221 Effects of High-Protein, Low-Energy Diet on Body Composition in Overweight and Obese Adults: A Clinical Trial
Authors: Makan Cheraghpour, Seyed Ahmad Hosseini, Damoon Ashtary-Larky, Saeed Shirali, Matin Ghanavati, Meysam Alipour
Abstract:
Background: In addition to reducing body weight, the low-calorie diets can reduce the lean body mass. It is hypothesized that in addition to reducing the body weight, the low-calorie diets can maintain the lean body mass. So, the current study aimed at evaluating the effects of high-protein diet with calorie restriction on body composition in overweight and obese individuals. Methods: 36 obese and overweight subjects were divided randomly into two groups. The first group received a normal-protein, low-energy diet (RDA), and the second group received a high-protein, low-energy diet (2×RDA). The anthropometric indices including height, weight, body mass index, body fat mass, fat free mass, and body fat percentage were evaluated before and after the study. Results: A significant reduction was observed in anthropometric indices in both groups (high-protein, low-energy diets and normal-protein, low-energy diets). In addition, more reduction in fat free mass was observed in the normal-protein, low-energy diet group compared to the high -protein, low-energy diet group. In other the anthropometric indices, significant differences were not observed between the two groups. Conclusion: Independently of the type of diet, low-calorie diet can improve the anthropometric indices, but during a weight loss, high-protein diet can help the fat free mass to be maintained.Keywords: diet, high-protein, body mass index, body fat percentage
Procedia PDF Downloads 3089220 Region-Specific Secretory Protein, α2M, in Male Reproductive Tract of the Blue Crab And Its Dynamics during Sperm transit towards Female Spermatheca
Authors: Thanyaporn Senarai, Rapeepun Vanichviriyakit, Shinji Miyata, Chihiro Sato, Prapee Sretarugsa, Wattana Weerachatyanukul, Ken Kitajima
Abstract:
In this study, we characterized a region-specific 250 kDa protein that was secreted of MSD fluid, which is believed to play dual functions in forming a spermatophoric wall for sperm physical protection, and in sperm membrane modification as part of sperm maturation process. The partial amino acid sequence and N-terminal sequencing revealed that the MSD-specific 250 kDa protein showed a high similarity with a plasma-rich protein, α-2 macroglobulin (α2M), so termed pp-α2M. This protein was a large glycoprotein contained predominantly mannose and GlcNAc. The expression of pp-α2M mRNA was detected in spermatic duct (SD), androgenic gland (AG) and hematopoietic tissue, while the protein expression was rather specific to the apical cytoplasm of MSD epithelium. The secretory pp-α2M in MSD fluid was acquired onto the MSD sperm membrane and was also found within the matrix of the acrosome. Distally, pp-α2M was removed from spermathecal sperm membrane, while its level kept constant in the sperm AC. Together the results indicate that pp-α2M is a 250 kDa region-specific secretory protein which plays roles in sperm physical protection and also acts as maturation factor in the P. pelagicus sperm.Keywords: alpha-2 macroglobulin, blue swimming crab, sperm maturation, spermatic duct
Procedia PDF Downloads 3299219 Ratio Energy and Protein of Dietary Based on Rice Straw Ammoniated on Productivity of Male Simenthal Cattle
Authors: Mardiati Zain, Yetti Marlida, Elihasridas Elihasridas, Erpomen Erpomen, Andri Andri
Abstract:
Background: Livestock productivity is greatly influenced by the energy and protein balance in diet. This study aimed to determine the energy and protein balance of male Simenthal cattle diet with protein and energy levels. The experimental design used was a randomized block design (RBD) 2x3x3 factorial design. There are two factors namely A level of energy diet that is 65% and 70% TDN. Factor B is a protein level of diet used were 10, 12 and 14% and each treatment is repeated three times. The weight of Simenthal cattle used ranged between 240 - 300 kg. Diet consisted of ammoniated rice straw and concentrated with ratio 40:60. Concentrate consisted of palm kernel cake, rice brain, cassava, mineral, and urea. The variables measured were digestibility of dry matter, organic matter and fiber, dry matter intake, daily gain, feed efficiency and blood characteristic. Results: There was no interaction between protein and energy level of diet on the nutrients intake (DM intake, OM intake, CP intake), weight gain and efficiency (P < 0.01). There was an interaction between protein and energy level of diet on digestibility (DM, OM, CP and allantoin urine (P > 0.01) Nutrients intake decreases with increasing levels of energy and protein diet, while nutrient digestibility, Avarage daily gain and feed efficiency increases with increasing levels of energy and protein diet. Conclusions: The result can be concluded that the best treatment was A2B1 which is energy level 70% TDN and protein 10%, where are dry matter intake 7.66 kg/d, daily gain 1.25 kg/d, feed efficiency 16.12%, and dry matter and organic matter digestibility 64.08 and 69.42% respectively.Keywords: energy and protein ratio, simenthal cattle, rice straw ammoniated, digestibility
Procedia PDF Downloads 3569218 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller
Authors: Alireza Dantism
Abstract:
Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller
Procedia PDF Downloads 979217 Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes
Authors: M. Kowalski, M. Brodowski, K. Dziabowska, E. Czaczyk, W. Bialobrzeska, N. Malinowska, S. Zoledowska, R. Bogdanowicz, D. Nidzworski
Abstract:
Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017.Keywords: anti-protein D antibodies, boron-doped carbon nanowall, impedance spectroscopy, Haemophilus influenzae.
Procedia PDF Downloads 1739216 Study of Eatable Aquatic Invertebrates in the River Dhansiri, Dimapur, Nagaland, India
Authors: Dilip Nath
Abstract:
A study has been conducted on the available aquatic invertebrates in the river Dhansiri at Dimapur site. The study confirmed that the river body composed of aquatic macroinvertebrate community under two phyla viz., Arthropods and Molluscs. Total 10 species have been identified from there as the source of alternative protein food for the common people. Not only the protein source, they are also the component of aquatic food chain and indicators of aquatic ecosystem. Proper management and strategies to promote the edible invertebrates can be considered as the alternative protein and alternative income source for the common people for sustainable livelihood improvement.Keywords: Dhansiri, Dimapur, invertebrates, livelihood improvement, protein
Procedia PDF Downloads 1529215 Protein and MDA (Malondialdehyde) Profil of Bull Sperm and Seminal Plasma After Freezing
Authors: Sri Rahayu, M. Dwi Susan, Aris Soewondo, W. M. Agung Pramana
Abstract:
Semen is an organic fluid (seminal plasma) that contain spermatozoa. Proteins are one of the major seminal plasma components that modulate sperm functionality, influence sperm capacitation and maintaining the stability of the membrane. Semen freezing is a procedure to preserve sperm cells. The process causes decrease in sperm viability due to temperature shock and oxidation stress. Oxidation stress is a disturbance on phosphorylation that increases ROS concentration, and it produces lipid peroxide in spermatozoa membrane resulted in high MDA (malondialdehyde) concentration. The objective of this study was to examine the effect of freezing on protein and MDA profile of bovine sperm cell and seminal plasma after freezing. Protein and MDA of sperm cell and seminal plasma were isolated from 10 sample. Protein profiles was analyzed by SDS PAGE with separating gel 12,5 %. The concentration of MDA was measured by spectrophotometer. The results of the research indicated that freezing of semen cause lost of the seminal plasma proteins with molecular with 20, 10, and 9 kDa. In addition, the result research showed that protein of the sperm (26, 10, 9, 7, and 6 kDa) had been lost. There were difference MDA concentration of seminal plasma and sperm cell were increase after freezing. MDA concentration of seminal plasma before and after freezing were 2.2 and 2.4 nmol, respectively. MDA concentration of sperm cell before and after freezing were 1,5 and 1.8 nmol, respectively. In conclusion, there were differences protein profiles of spermatozoa before and after semen freezing and freezing cause increasing of the MDA concentration.Keywords: MDA, semen freezing, SDS PAGE, protein profile
Procedia PDF Downloads 2769214 BiFormerDTA: Structural Embedding of Protein in Drug Target Affinity Prediction Using BiFormer
Authors: Leila Baghaarabani, Parvin Razzaghi, Mennatolla Magdy Mostafa, Ahmad Albaqsami, Al Warith Al Rushaidi, Masoud Al Rawahi
Abstract:
Predicting the interaction between drugs and their molecular targets is pivotal for advancing drug development processes. Due to the time and cost limitations, computational approaches have emerged as an effective approach to drug-target interaction (DTI) prediction. Most of the introduced computational based approaches utilize the drug molecule and protein sequence as input. This study does not only utilize these inputs, it also introduces a protein representation developed using a masked protein language model. In this representation, for every individual amino acid residue within the protein sequence, there exists a corresponding probability distribution that indicates the likelihood of each amino acid being present at that particular position. Then, the similarity between each pair of amino-acids is computed to create similarity matrix. To encode the knowledge of the similarity matrix, Bi-Level Routing Attention (BiFormer) is utilized, which combines aspects of transformer-based models with protein sequence analysis and represents a significant advancement in the field of drug-protein interaction prediction. BiFormer has the ability to pinpoint the most effective regions of the protein sequence that are responsible for facilitating interactions between the protein and drugs, thereby enhancing the understanding of these critical interactions. Thus, it appears promising in its ability to capture the local structural relationship of the proteins by enhancing the understanding of how it contributes to drug protein interactions, thereby facilitating more accurate predictions. To evaluate the proposed method, it was tested on two widely recognized datasets: Davis and KIBA. A comprehensive series of experiments was conducted to illustrate its effectiveness in comparison to cuttingedge techniques.Keywords: BiFormer, transformer, protein language processing, self-attention mechanism, binding affinity, drug target interaction, similarity matrix, protein masked representation, protein language model
Procedia PDF Downloads 129213 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 4819212 Identification and Characterization of Nuclear Envelope Protein Interactions
Authors: Mohammed Hakim Jafferali, Balaje Vijayaraghavan, Ricardo A. Figueroa, Ellinor Crafoord, Veronica J. Larsson, Einar Hallberg, Santhosh Gudise
Abstract:
The nuclear envelope which surrounds the chromatin of eukaryotic cells contains more than a hundred transmembrane proteins. Mutations in some genes encoding nuclear envelope proteins give rise to human diseases including neurological disorders. The function of many nuclear envelope proteins is not well established. This is partly because nuclear envelope proteins and their interactions are difficult to study due to the inherent resistance to extraction of nuclear envelope proteins. We have developed a novel method called MCLIP, to identify interacting partners of nuclear envelope proteins in live cells. Using MCLIP, we found three new binding partners of the inner nuclear membrane protein Samp1: the intermediate filament protein Lamin B1, the LINC complex protein Sun1 and the G-protein Ran. Furthermore, using in vitro studies, we show that Samp1 binds both Emerin and Ran directly. We have also studied the interaction between Samp1 and Ran in detail. The results show that the Samp1 binds stronger to RanGTP than RanGDP. Samp1 is the first transmembrane protein known to bind Ran and it is tempting to speculate that Samp1 may provide local binding sites for RanGTP at membranes.Keywords: MCLIP, nuclear envelope, ran, Samp1
Procedia PDF Downloads 3539211 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 6219210 RNA Antisense Coat Protein Showing Promising Effects against Cotton Leaf Curl Disease in Pakistani Cotton
Authors: Zunnu Raen Akhtar
Abstract:
Cotton Leaf Curl Disease (CLCuD) is from Gemini virus and is transmitted through whiteflies in cotton. Transgenic cotton containing Antisense Coat Protein (ACP) has been found to show better results against CLCuD in cotton. In current research, Antisense Coat Protein was inserted in cotton plants to observe resistance developed in the cotton plants against CLCuD. T1 generation of plants were observed for its expression in plants. Tests were carried out to observe the expression of Antisense Coat Protein using Polymerase Chain Reaction (PCR) technique and by southern blotting. Whiteflies showing positive Cotton Leaf Curl Virus (CLCV) were reared and released in bioassay on ACP expressing cotton plants under laboratory as well as confined semi-field conditions. Results confirmed the expression of AC protein in PCR and southern blotting. Further laboratory results showed that cotton plants expressing AC protein showed rare incidence of CLCuD infection as compared to control. In the confined semi-field, similar results were observed in AC protein expressing cotton as compared to control. These results explicitly show that ACP can help to tackle the CLCuD issue in the future and further studies on biochemical processes involved in these plants and effects of ACP induction on non-target organisms should also be studied for eco-system.Keywords: cotton, white flies, antisense coat protein, CLCV
Procedia PDF Downloads 1849209 New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell
Authors: Hamzeh Alipour, Masoumeh Bagheri, Abbasali Raz, Javad Dadgar Pakdel, Kourosh Azizi, Aboozar Soltani, Mohammad Djaefar Moemenbellah-Fard
Abstract:
Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing.Keywords: blowfly, BEVS, gene, immature insect, recombinant protein, Sf9
Procedia PDF Downloads 939208 Growth Response and Nutrient Utilization of African Mud Catfish Clarias gariepinus (Burchell, 1822) Fingerlings Fed Processed Macroalgae and Macroalgae-Based Formulated Feeds
Authors: A. O Amosu, A. M Hammed, G. W. Maneveldt, D. V. Robertson-Andersson
Abstract:
In aquaculture, feed utilization is an important factor affecting growth of the target species, and thus the success of the aquaculture operation. Growth of C. gariepinus fingerlings (weight 1.60 ± 0.05 g; length 4.50 ± 0.07cm) was monitored in a closed door hatchery for a period of 21 days in an experiment consisting of 4 treatments stocked at 20 fish/10 litre tanks, fed in triplicate twice daily (08:30, 17:30) at 4% body weight with weight changes recorded every 3 days. Treatments were: 1) FeedX; 2) 35% crude protein diet + non enriched Ulva spp (11.18% crude protein) (CD + NEU); 3) 35% crude protein diet + enriched Ulva spp (11.98% crude protein)(CD +EU) and 4) control diet of 35% crude protein (CD). The production of Ulva spp. biomass was cultivated for a period of 3 months. The result shows that the fish fed macroalgal enriched diet had good growth, though no significant difference (p > 0.05) was recorded amongst the weight gain, %weight gain, specific growth rates and nitrogen metabolism of diets CD + NEU, CD + EU and CD. Significant differences (p < 0.05), were, however, found in the food conversion ratio (FCR) and gross food conversion ratio (gFCR) among the fingerlings across all the different experimental diets. The best FCRs were recorded for control diet (0.79 ± 2.39) and the Ulva enriched (1.75 ± 1.34) diets. The results suggest that the fingerlings were able to utilize Ulva supplemented with control diet better than the FeedX. We have shown that Ulva supplemented diets are good substitutes for formulated and commercial feeds, with potential to be successful fish feed in aquaculture systems.Keywords: aquaculture, clarias gariepinus, growth, macroalgae, nutrient, ulva
Procedia PDF Downloads 7029207 Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production
Authors: Luz Stella Cadavid-Rodriguez, Viviana E. Castro-Lopez
Abstract:
Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical.Keywords: acidogenesis, artisanal fishing waste, inoculum to substrate ratio, volatile fatty acids
Procedia PDF Downloads 1269206 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique
Authors: J. Suwanprateeb, F. Thammarakcharoen
Abstract:
Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium
Procedia PDF Downloads 3859205 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications
Authors: Debajyoti Bose
Abstract:
Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.Keywords: fungi, chitosan, enzyme, nanocapsule
Procedia PDF Downloads 5039204 Inhibitory Effects of Ambrosia trifida L. on the Development of Root Hairs and Protein Patterns of Radicles
Authors: Ji-Hyon Kil, Kew-Cheol Shim, Kyoung-Ae Park, Kyoungho Kim
Abstract:
Ambrosia trifida L. is designated as invasive alien species by the Act on the Conservation and Use of Biodiversity by the Ministry of Environment, Korea. The purpose of present paper was to investigate the inhibitory effects of aqueous extracts of A.trifida on the development of root hairs of Triticum aestivum L., and Allium tuberosum Rottler ex Spreng and the electrophoretic protein patterns of their radicles. The development of root hairs was inhibited by increasing of aqueous extract concentrations. Through SDS-PAGE, the electrophoretic protein bands of extracted proteins from their radicles were appeared in controls, but protein bands of specific molecular weight disappeared or weakened in treatments. In conclusion, inhibitory effects of A. trifida made two receptor species changed morphologically, and at the molecular level in early growth stage.Keywords: Ambrosia trifida L., invasive alien species, inhibitory effect, root hair, electrophoretic protein, radicle
Procedia PDF Downloads 3619203 The Effect of Using Levels of Red Tiger Shrimp Meal in Starter Broiler Diet upon Growth Performance
Authors: Mohammed I.A. Al-Neemi, Mohammed S.B., Al-Hlawee, Ilham N. Ezaddin, Soz A. Faris, Omer E. Fakhry, Heemen S. Mageed
Abstract:
This objective of this study was to measure the effect of replacing different levels of animal protein concentrate with Red Tiger shrimp meal (RTSM: 60 % crude protein, 2400 M.E kcal/kg and the source of RTSM was imported from china) in the broiler starter diets. A total 300 broiler chicks (Ross-308) were randomly assigned in treatments dietary contained three different levels of RTSM (0.00, 4.16 and 8.32 %) in experimental diet with a completely randomized design (CRD). Each treatment included four replicates (floor pens) and 25 broilers in each replication (Pen). Therefore, floor space for each boilers was 900 cm2. Initially, the broilers where exposed to a continues lighting of 23:30 hours and dark period of 30 minutes in each 24 hours. Feed and water were supplied ad libitum to the broilers throughout the experimental period (1-21 days). The results of this study indicated that body weight (B.W.), body weight gain (B.W.G), conversion ratio of feed, protein and energy (F.CR, P.C.R and E.C.R) were significantly (p ≤ 0.05) decreased by complete substituting (RTSM) for animal protein concentration (third treatment). Mortality percentage significantly (p ≤ 0.05) increased for third dietary treatment. No significant differences were found for feed, protein and energy intake among treatments during the experimental period (three weeks). In conclusion, (RTSM) could be included to 4.16% in the broiler starter diet or substitute the protein Red Tiger shrimp as alternative of protein animal protein concentrate as much as 50%.Keywords: red tiger shrimp, broiler, starter diet, growth performance, animal protein concentrate
Procedia PDF Downloads 5689202 Review of the Nutritional Value of Spirulina as a Potential Replacement of Fishmeal in Aquafeed
Authors: Onada Olawale Ahmed
Abstract:
As the intensification of aquaculture production increases on global scale, the growing concern of fish farmers around the world is related to cost of fish production, where cost of feeding takes substantial percentage. Fishmeal (FM) is one of the most expensive ingredients, and its high dependence in aqua-feed production translates to high cost of feeding of stocked fish. However, to reach a sustainable aquaculture, new alternative protein sources including cheaper plant or animal origin proteins are needed to be introduced for stable aqua-feed production. Spirulina is a cyanobacterium that has good nutrient profile that could be useful in aquaculture. This review therefore emphasizes on the nutritional value of Spirulina as a potential replacement of FM in aqua-feed. Spirulina is a planktonic photosynthetic filamentous cyanobacterium that forms massive populations in tropical and subtropical bodies of water with high levels of carbonate and bicarbonate. Spirulina grows naturally in nutrient rich alkaline lake with water salinity ( > 30 g/l) and high pH (8.5–11.0). Its artificial production requires luminosity (photo-period 12/12, 4 luxes), temperature (30 °C), inoculum, water stirring device, dissolved solids (10–60 g/litre), pH (8.5– 10.5), good water quality, and macro and micronutrient presence (C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se). Spirulina has also been reported to grow on agro-industrial waste such as sugar mill waste effluent, poultry industry waste, fertilizer factory waste, and urban waste and organic matter. Chemical composition of Spirulina indicates that it has high nutritional value due to its content of 55-70% protein, 14-19% soluble carbohydrate, high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 percent total lipid, all the essential minerals are available in spirulina which contributes about 7 percent (average range 2.76–3.00 percent of total weight) under laboratory conditions, β-carotene, B-group vitamin, vitamin E, iron, potassium and chlorophyll are also available in spirulina. Spirulina protein has a balanced composition of amino acids with concentration of methionine, tryptophan and other amino acids almost similar to those of casein, although, this depends upon the culture media used. Positive effects of spirulina on growth, feed utilization and stress and disease resistance of cultured fish have been reported in earlier studies. Spirulina was reported to replace up to 40% of fishmeal protein in tilapia (Oreochromis mossambicus) diet and even higher replacement of fishmeal was possible in common carp (Cyprinus carpio), partial replacement of fish meal with spirulina in diets for parrot fish (Oplegnathus fasciatus) and Tilapia (Orechromis niloticus) has also been conducted. Spirulina have considerable potential for development, especially as a small-scale crop for nutritional enhancement and health improvement of fish. It is important therefore that more research needs to be conducted on its production, inclusion level in aqua-feed and its possible potential use of aquaculture.Keywords: aquaculture, spirulina, fish nutrition, fish feed
Procedia PDF Downloads 5219201 Nutritional Characteristics, Mineral contents, Amino acid Composition and Phytochemical Analysis of Eryngium alpinium Leaf Protein Concentrates
Authors: Owonikoko A. D., Odoje O. F.
Abstract:
Fresh sample of Eryngium alpinum was purchased and processed for leaf protein concentrates with a view to evaluating its nutritional potential, mineral composition, amino acid characteristics and phytochemical constituents. Using standard analytical methods. The proximate composition of the leaf protein concentrates revealed moisture content;(5.35±0.21)g/100g, ash;(11.37±0.43)g/100g, crude protein;(48.17±0.46)g/100g, crude fat;(15.38±0.07)g/100g, crude fibre (3.05±0.46)g/100g, and Nitrogen free extractive; (16.68±0.30) g/100g. The mineral content was: Na;(51.88±0.23) mg/100g, K;(65.40±0.32)mg/100g, Ca; (86.89±0.46)mg/100g, Mg;(49.27±0.42) mg/100g, Zn;(0.62±0.03)mg/100g, Fe (6.65±0.43)mg/100g, Mn;(0.96±0.54)mg/100g, Cd;(0.28±0.04)mg/100g, P; (8.55±0.97)mg/100g, while selenium, lead and mercury were not detected in the sample indicating that the sample is free of causing risk of metal poisoning. The results of phytochemical constituents showed phytate; (18.34±0.36)mg/100g, flavonoid (0.25±0.41)mg/100g. The sample contain both essential and non-essential amino acid, with the highest value of Glutamic acid (12.26) and the lowest value of Tryptophan 1.05. the content of the leaf protein content shows that the sample is fit for dietary consumption and could as well be processed to be used as food additives.Keywords: mineral composition, phytochemical analysis, leaf protein concentrates, eryngium alpinum
Procedia PDF Downloads 1099200 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain
Authors: Nizar Chaira
Abstract:
Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.Keywords: date palm, fermentation, molasses, Saccharomyces, syrup
Procedia PDF Downloads 3219199 Dissociation of Hydrophobic Interactions in Whey Protein Polymers: Molecular Characterization Using Dilute Solution Viscometry
Authors: Ahmed S. Eissa
Abstract:
Whey represents about 85-95% of the milk volume and about 55% of milk nutrients. Whey proteins are of special importance in formulated foods due to their rich nutritional and functional benefits. Whey proteins form large polymers upon heating to a temperature greater than the denaturation temperature. Hydrophobic interactions play an important role in building whey protein polymers. In this study, dissociation of hydrophobic interactions of whey protein polymers was done by adding Sodium Dodecyl Sulphonate (SDS). At low SDS concentrations, protein polymers were dissociated to smaller chains, as revealed by dilution solution viscometry (DSV). Interestingly, at higher SDS concentrations, polymer molecules got larger in size. Intrinsic viscosity was increased to many folds when raising the SDS concentration from 0.5% to 2%. Complex molecular arrangement leads to the formation of larger macromolecules, due to micelle formation. The study opens a venue for manipulating and enhancing whey protein functional properties by manipulating the hydrophobic interactions.Keywords: whey proteins, hydrophobic interactions, SDS
Procedia PDF Downloads 2499198 Removal of Protein from Chromium Tanning Bath by Biological Treatment Using Pseudomonas sp.
Authors: Amel Benhadji, Mourad Taleb Ahmed, Rachida Maachi
Abstract:
The challenge for the new millennium is to develop an industrial system that has minimal socio-ecological impacts, without compromising quality of life. Leather industry is one of these industries demanding environmentally friendly products. In this study, we investigated the possibility of applying innovative low cost biological treatment using Pseudomonas aeruginosa. This strain tested the efficiency of the batch biological treatment in the recovery of protein and hexavalent chromium from chromium tanning bath. We have compared suspended and fixed bacteria culture. The results showed the removal of the total protein of treatment and a decrease of hexavalent chromium concentration is during the treatment. The better efficiency of the biological treatment is obtained when using fixed culture of P. aeruginosa.Keywords: tanning wastewater, biological treatment, protein removal, hexavalent chromium
Procedia PDF Downloads 3679197 Recovery of Proteins from EDAM Whey Using Membrane Ultrafiltration
Authors: F. Yelles-Allam, A. A. Nouani
Abstract:
In Algeria, whey is discarded without any treatment and this causes not only pollution problem, but also a loss in nutritive components of milk. In this paper, characterization of EDAM whey, which is resulted from pasteurised mixture of cow’s milk and skim milk, and recovery of whey protein by ultrafiltration / diafiltration, was studied. The physical-chemical analysis of whey has emphasized on its pollutant and nutritive characteristics. In fact, its DBO5 and DCO are 49.33, and 127.71 gr of O2/l of whey respectively. It contains: fat (1,90±0,1 gr/l), lactose (47.32±1,57 gr/l), proteins (8.04±0,2 gr/l) and ashes (5,20±0,15 gr/l), calcium (0,48±0,04 gr/l), Na (1.104gr/l), K (1.014 gr/l), Mg (0.118 gr/l) and P (0.482 gr/l). Ultrafiltration was carried out in a polyetersulfone membrane with a cut-off of 10K. Its hydraulic intrinsic resistance and permeability are respectively: 2.041.1012 m-1 and 176,32 l/h.m2 at PTM of 1 bar. The retentate obtained at FC6, contains 16,33g/l of proteins and 70,25 g/l of dry matter. The retention rate of protein is 97, 7% and the decrease in DBO5 and DCO are at 18.875 g /l and 42.818 g/l respectively. Diafiltration performed on protein concentrates allowed the complete removal of lactose and minerals. The ultrafiltration of the whey before the disposal is an alternative for Algéria dairy industry.Keywords: diafiltration, DBO, DCO, protein, ultrafiltration, whey
Procedia PDF Downloads 2569196 Isolation and Characterization White Spot Syndrome Protein Envelope Protein 19 from Black Tiger Shrimp (Penaeus monodon)
Authors: Andi Aliah Hidayani, Asmi Citra Malina A. R. Tassakka, Andi Parenrengi
Abstract:
Vanname Shrimp is one of the high yielding varieties that are more resistant to virus attacks. However, now this shrimp more death due to virus attack such as white spot disease caused by white spot syndrome virus (WSSV). Various efforts have done to prevent the disease, like immunostimulatory, probiotics, and vaccine. White spot syndrome virus (WSSV) envelope protein VP19 gene is important because of its involvement in the system infection of shrimp. This study aimed to isolate and characterize an envelope protein VP19 – encoding gene of WSSV using WSSV infected Vanname Shrimp sample from some areas in South Sulawesi (Pangkep, Barru and Pinrang). The genomic of DNA were isolated from shrimp muscle using DTAB-CTAB method. Isolation of gene encoding envelope protein VP19 WSSV ws successfully performed with the results of the length of DNA fragment was 387 bp. The results of homology analysis using BLASTn homology suggested that these isolates genes from Barru, Pangkep and Pinrang have closest relationship with isolates from Mexican.Keywords: vanname, shrimp, WSSV, viral protein 19
Procedia PDF Downloads 5369195 Value Added by Spirulina Platensis in Two Different Diets on Growth Performance, Gut Microbiota, and Meat Quality of Japanese Quails
Authors: Mohamed Yusuf
Abstract:
Aim: The growth promoting the effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. Materials and Methods: This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Results: Data revealed improvement (p<0.05) of weight gain, feed conversion ratio, and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g(SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kgVPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fishmeal based diet for growing Japanese quails. Conclusion: Using of SP will support the profitable production of Japanese quails fed vegetable protein diet.Keywords: isocaloric, isonitrogenous, meat quality, performances, quails, spirulina, spirulina
Procedia PDF Downloads 250