Search results for: intent detection
3511 Finite Element Simulation for Preliminary Study on Microorganism Detection System
Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun
Abstract:
A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.Keywords: microorganism, microfluidic, total internal reflection, lab on chip
Procedia PDF Downloads 2773510 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1423509 Hand Detection and Recognition for Malay Sign Language
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara
Abstract:
Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.Keywords: hand detection, hand gesture, hand recognition, sign language
Procedia PDF Downloads 3063508 Evaluating Gallein Dye as a Beryllium Indicator
Authors: Elise M. Shauf
Abstract:
Beryllium can be found naturally in some fruits and vegetables (carrots, garden peas, kidney beans, pears) at very low concentrations, but is typically not clinically significant due to the low-level exposure and limited absorption of beryllium by the stomach and intestines. However, acute or chronic beryllium exposure can result in harmful toxic and carcinogenic biological effects. Beryllium can be both a workplace hazard and an environmental pollutant, therefore determining the presence of beryllium at trace levels can be essential to protect workers as well as the environment. Analysis of gallein, C₂₀H₁₂O₇, to determine if it is usable as a fluorescent dye for beryllium detection. The primary detection method currently in use includes hydroxybenzoquinoline sulfonates (HBQS), for which alternative indicators are desired. Unfortunately, gallein does not have the desired aspects needed as a dye for beryllium detection due to the peak shift properties.Keywords: beryllium detection, fluorescent, gallein dye, indicator, spectroscopy
Procedia PDF Downloads 1423507 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data
Authors: Junyou Shi, Weiwei Cui
Abstract:
Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.Keywords: fault detection, fault isolation, testability modeling, BIT
Procedia PDF Downloads 3343506 Isothermal Solid-Phase Amplification System for Detection of Yersinia pestis
Authors: Olena Mayboroda, Angel Gonzalez Benito, Jonathan Sabate Del Rio, Marketa Svobodova, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan, Ioanis Katakis
Abstract:
DNA amplification is required for most molecular diagnostic applications but conventional PCR has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the Recombinase Polymerase Amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 hour at a constant temperature of 37oC. Single-stranded and double-stranded DNA sequences were detected achieving detection limits of 4.04*10-13 M and 3.14*10-16 M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets.Keywords: recombinase polymerase amplification, Yersinia pestis, solid-phase detection, ELONA
Procedia PDF Downloads 3033505 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 5283504 Saliency Detection Using a Background Probability Model
Authors: Junling Li, Fang Meng, Yichun Zhang
Abstract:
Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.Keywords: visual saliency, background probability, boundary knowledge, background priors
Procedia PDF Downloads 4293503 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.Keywords: corner detection, optical flow, epipolar geometry, RANSAC
Procedia PDF Downloads 4093502 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 1613501 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking
Procedia PDF Downloads 4583500 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 2713499 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 533498 A Research and Application of Feature Selection Based on IWO and Tabu Search
Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu
Abstract:
Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.Keywords: intrusion detection, feature selection, iwo, tabu search
Procedia PDF Downloads 5303497 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 2033496 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1263495 Attack Redirection and Detection using Honeypots
Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat
Abstract:
A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner
Procedia PDF Downloads 1563494 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 1153493 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2383492 Strabismus Detection Using Eye Alignment Stability
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization
Procedia PDF Downloads 763491 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor applicationKeywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection
Procedia PDF Downloads 4813490 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 3113489 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.Keywords: object-based, roof material, concrete tile, WorldView-2
Procedia PDF Downloads 4243488 Utilisation of Sports and Games for Psychosocial Rehabilitation of Internally Displaced Persons in Maiduguri, Nigeria
Authors: Stephen Hamafyelto, Hussaini Garba, Mary Pindar Ndahi
Abstract:
The study was carried out with the intent to mitigate the trauma experienced by victims of insurgent attacks by the so-called Boko Haram militants in Borno state of Nigeria. The area was ridden by the crisis over the past 9 years. As a result, many people were killed, maimed and raped. Some others suffered all manner of inhuman treatment at the hands of their captors. The extent to which this dehumanized treatment has gone and impacted on the people in this area has left most of them traumatised. Victims who survived the attacks have been resettled in camps provided by government where their needs have been cared for. This can never be the same with their natural habitats. Many interventions have also been done by government, non-governmental organisations and corporate and individual bodies. In this regard, social needs of the victims have been the immediate concerns of most organisations, where food, shelter, and clothing were provided. However, there is little that has been done to rehabilitate these victims psychosocially. In this regard, sports and games including the victims’ local games were used to provide psychosocial rehabilitation of victims. The intent was to bring them back to social reality, social inclusion, and stable emotions and peer integration. Descriptive statistics and Multivariate analysis were done. No statistically significant difference was found among male and female children and adults in terms of psychosocial rehabilitation using sports and games.Keywords: social reality, social inclusion, emotional intellegence, peer model
Procedia PDF Downloads 2053487 Generating Ideas to Improve Road Intersections Using Design with Intent Approach
Authors: Omar Faruqe Hamim, M. Shamsul Hoque, Rich C. McIlroy, Katherine L. Plant, Neville A. Stanton
Abstract:
Road safety has become an alarming issue, especially in low-middle income developing countries. The traditional approaches lack the out of the box thinking, making engineers confined to applying usual techniques in making roads safer. A socio-technical approach has recently been introduced in improving road intersections through designing with intent. This Design With Intent (DWI) approach aims to give practitioners a more nuanced approach to design and behavior, working with people, people’s understanding, and the complexities of everyday human experience. It's a collection of design patterns —and a design and research approach— for exploring the interactions between design and people’s behavior across products, services, and environments, both digital and physical. Through this approach, it can be seen that how designing with people in behavior change can be applied to social and environmental problems, as well as commercially. It has a total of 101 cards across eight different lenses, such as architectural, error-proofing, interaction, ludic, perceptual, cognitive, Machiavellian, and security lens each having its own distinct characteristics of extracting ideas from the participant of this approach. For this research purpose, a three-legged accident blackspot intersection of a national highway has been chosen to perform the DWI workshop. Participants from varying fields such as civil engineering, naval architecture and marine engineering, urban and regional planning, and sociology actively participated for a day long workshop. While going through the workshops, the participants were given a preamble of the accident scenario and a brief overview of DWI approach. Design cards of varying lenses were distributed among 10 participants and given an hour and a half for brainstorming and generating ideas to improve the safety of the selected intersection. After the brainstorming session, the participants spontaneously went through roundtable discussions regarding the ideas they have come up with. According to consensus of the forum, ideas were accepted or rejected. These generated ideas were then synthesized and agglomerated to bring about an improvement scheme for the intersection selected in our study. To summarize the improvement ideas from DWI approach, color coding of traffic lanes for separate vehicles, channelizing the existing bare intersection, providing advance warning traffic signs, cautionary signs and educational signs motivating road users to drive safe, using textured surfaces at approach with rumble strips before the approach of intersection were the most significant one. The motive of this approach is to bring about new ideas from the road users and not just depend on traditional schemes to increase the efficiency, safety of roads as well and to ensure the compliance of road users since these features are being generated from the minds of users themselves.Keywords: design with intent, road safety, human experience, behavior
Procedia PDF Downloads 1393486 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3683485 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 4583484 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4963483 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform
Authors: Enqing Chen, Jianbo Wang
Abstract:
It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.Keywords: edge detection, NSCT, shift invariant, modulus maxima
Procedia PDF Downloads 4883482 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 230