Search results for: huge carbon footprint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4460

Search results for: huge carbon footprint

4340 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference

Procedia PDF Downloads 421
4339 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend

Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar

Abstract:

Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.

Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend

Procedia PDF Downloads 202
4338 Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut.

Keywords: carbon dioxide, hazelnut, qualitative characteristics, organoleptic

Procedia PDF Downloads 88
4337 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement

Authors: Sh. Minapoor, S. Ajeli

Abstract:

Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.

Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending

Procedia PDF Downloads 298
4336 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan

Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata

Abstract:

The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.

Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint

Procedia PDF Downloads 302
4335 Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes

Authors: Mohammad R. Irshidat, Mohammed H. Al-Saleh, Mahmoud Al-Shoubaki

Abstract:

This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.

Keywords: CNT, epoxy, carbon fiber, RC columns

Procedia PDF Downloads 361
4334 Managing the Transition from Voluntary to Mandatory Climate Reporting: The Role of Carbon Accounting

Authors: Qingliang Tang

Abstract:

The transition from voluntary to mandatory carbon reporting (also refers to climate reporting) poses serious challenges for accounting professionals aiming to support firms in achieving net-zero goals. The accounting literature addresses the topics that are currently bewildering accounting academics and professional accountants on how to make accounting as a useful tool for the management to achieve a carbon neutral business model. This paper explores the evolving role of carbon accounting within corporate financial reporting systems, emphasizing its integration as a crucial component. Key challenges addressed include data availability, climate risk assessment, defining reporting boundaries, selecting appropriate greenhouse gas (GHG) accounting methodologies, and integrating climate-related events into traditional financial statements. A dynamic, integrated carbon accounting framework is proposed to facilitate this transformative process effectively. Furthermore, the paper identifies critical knowledge gaps and sets forth a research agenda aimed at enhancing transparency and relevance in carbon accounting and reporting systems, thereby empowering informed decision-making. The purpose of the paper is to succinctly capture the essence of carbon accounting practice in the transitional period, focusing on the challenges, proposed solutions, and future research directions in the realm of carbon accounting and mandatory climate reporting.

Keywords: mandatory carbon reporting, carbon management, net zero target, sustainability, climate risks

Procedia PDF Downloads 18
4333 The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China

Authors: Xia Fang

Abstract:

Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones.

Keywords: AEM, climate change, LUCC, carbon stocks

Procedia PDF Downloads 80
4332 Measuring Ecological Footprint: Life Cycle Assessment Approach

Authors: Binita Shah, Seema Unnikrishnan

Abstract:

In the recent time, an increasing interest in the analysis and efforts to reduce the environmental impacts generated by man-made activities has been seen widely being discussed and implemented by the society. The industrial processes are expressing their concern and showing keen interest in redesigning and amending the operation process leading to better environmental performance by upgrading technologies and adjusting the financial inputs. There are various tools available for the assessment of process and production of goods on the environment. Most methods look at a particular impact on the ecosystem. Life Cycle Assessment (LCA) is one of the most widely accepted and scientifically founded methodologies to assess the overall environmental impacts of products and processes. This paper looks at the tools used in India for environmental impact assessment.

Keywords: life cycle assessment, ecological footprint, measuring sustainability, India

Procedia PDF Downloads 647
4331 Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd

Authors: Ji Sun Kim, Jae Ho Baek, Kyeong Ho Kim, Ji Hae Ha, Seong Soo Hong, Jung-Wook Park, Man Sig Lee

Abstract:

Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/.

Keywords: carbon, dispersion, Pd/C, specific are, support

Procedia PDF Downloads 352
4330 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water

Authors: Mercedeh Malekzadeh

Abstract:

Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.

Keywords: chromium (III), pyrolytic carbon, scrap tire, water

Procedia PDF Downloads 200
4329 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection

Authors: Martin Pumera

Abstract:

Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.

Keywords: graphene, 2D nanomaterials, biosensing, chip design

Procedia PDF Downloads 550
4328 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp

Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros

Abstract:

Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.

Keywords: adsorption, activated carbon, babassu, dende

Procedia PDF Downloads 371
4327 Environmental Sustainability in Sport: A Review of Current Efforts and Initiatives

Authors: Maryam Mehrabpour

Abstract:

The sports industry has recognized its impact on the natural environment and has taken steps to address relevant environmental issues. Two key initiatives have emerged: reducing the ecological footprint of sports activities and utilizing sports as a platform to raise environmental awareness. This article provides an overview of the scholarly research conducted on environmental sustainability in sports. It highlights various environmental programs implemented by sports organizations worldwide and examines the current state of environmental efforts in the field. The research utilized semi-structured interviews, website analysis, and published documents as data sources, and qualitative analysis methods were employed to identify themes representing the current status of environmental efforts in sports.

Keywords: environmental sustainability, sport industry, ecological footprint, environmental awareness, environmental programs

Procedia PDF Downloads 90
4326 Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose

Authors: M. Z. Shazana, R. Rosazley, M. A. Izzati, A. W. Fareezal, I. Rushdan, A. B. Suriani, S. Zakaria

Abstract:

There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well.

Keywords: carbon nanotube (CNT), nanofibrillated cellulose (NFC), mechanical properties, electrical conductivity

Procedia PDF Downloads 334
4325 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis

Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman

Abstract:

Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.

Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation

Procedia PDF Downloads 389
4324 Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst

Authors: Seyyed Ershad Moradi, Javad Khodaveisi, Atefeh Nasrollahpour

Abstract:

In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage.

Keywords: mesoporous carbon, photodegradation, surface modification, titanium oxide

Procedia PDF Downloads 194
4323 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 435
4322 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 547
4321 Payment of Carbon Offsetting: A Case Study in Dharan, Nepal

Authors: Mana Shrestha, Dhruba Khatri, Pralhad Kunwor

Abstract:

The objective of the study was to explore the vehicle owners’ willingness to pay (WTP) for offsetting carbon that could eventually facilitate local governmental institutions to take further step in environmental conservation. Contingent valuation method was used to find out how much amount people were willing to pay for the carbon service they are getting from providers. Open ended questionnaire was carried out with 181 respondents randomly. The result shows different mean willingness to pay amount depending upon demographic variations like education, occupation, sex and residence but the occupation and the educational status significantly affected the WTP of respondent. Total WTP amount was calculated as 650 NRS.

Keywords: community forest, carbon offset, Kyoto, REDD WTP

Procedia PDF Downloads 304
4320 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors

Authors: Vivek Kumar, Alexander M. Zaitsev

Abstract:

A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.

Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy

Procedia PDF Downloads 446
4319 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species

Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu

Abstract:

Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.

Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species

Procedia PDF Downloads 362
4318 Industrial Hemp Agronomy and Fibre Value Chain in Pakistan: Current Progress, Challenges, and Prospects

Authors: Saddam Hussain, Ghadeer Mohsen Albadrani

Abstract:

Pakistan is one of the most vulnerable countries to climate change. Being a country where 23% of the country’s GDP relies on agriculture, this is a serious cause of concern. Introducing industrial hemp in Pakistan can help build climate resilience in the agricultural sector of the country, as hemp has recently emerged as a sustainable, eco-friendly, resource-efficient, and climate-resilient crop globally. Hemp has the potential to absorb huge amounts of CO₂, nourish the soil, and be used to create various biodegradable and eco-friendly products. Hemp is twice as effective as trees at absorbing and locking up carbon, with 1 hectare (2.5 acres) of hemp reckoned to absorb 8 to 22 tonnes of CO₂ a year, more than any woodland. Along with its high carbon-sequestration ability, it produces higher biomass and can be successfully grown as a cover crop. Hemp can grow in almost all soil conditions and does not require pesticides. It has fast-growing qualities and needs only 120 days to be ready for harvest. Compared with cotton, hemp requires 50% less water to grow and can produce three times higher fiber yield with a lower ecological footprint. Recently, the Government of Pakistan has allowed the cultivation of industrial hemp for industrial and medicinal purposes, making it possible for hemp to be reinserted into the country’s economy. Pakistan’s agro-climatic and edaphic conditions are well-suitable to produce industrial hemp, and its cultivation can bring economic benefits to the country. Pakistan can enter global markets as a new exporter of hemp products. The production of hemp in Pakistan can be most exciting to the workforce, especially for farmers participating in hemp markets. The minimum production cost of hemp makes it affordable to small holding farmers, especially those who need their cropping system to be as highly sustainable as possible. Dr. Saddam Hussain is leading the first pilot project of Industrial Hemp in Pakistan. In the past three years, he has been able to recruit high-impact research grants on industrial hemp as Principal Investigator. He has already screened the non-toxic hemp genotypes, tested the adaptability of exotic material in various agroecological conditions, formulated the production agronomy, and successfully developed the complete value chain. He has developed prototypes (fabric, denim, knitwear) using hemp fibre in collaboration with industrial partners and has optimized the indigenous fibre processing techniques. In this lecture, Dr. Hussain will talk on hemp agronomy and its complete fibre value chain. He will discuss the current progress, and will highlight the major challenges and future research direction on hemp research.

Keywords: industrial hemp, agricultural sustainability, agronomic evaluation, hemp value chain

Procedia PDF Downloads 81
4317 Analyzing Spatio-Structural Impediments in the Urban Trafficscape of Kolkata, India

Authors: Teesta Dey

Abstract:

Integrated Transport development with proper traffic management leads to sustainable growth of any urban sphere. Appropriate mass transport planning is essential for the populous cities in third world countries like India. The exponential growth of motor vehicles with unplanned road network is now the common feature of major urban centres in India. Kolkata, the third largest mega city in India, is not an exception of it. The imbalance between demand and supply of unplanned transport services in this city is manifested in the high economic and environmental costs borne by the associated society. With the passage of time, the growth and extent of passenger demand for rapid urban transport has outstripped proper infrastructural planning and causes severe transport problems in the overall urban realm. Hence Kolkata stands out in the world as one of the most crisis-ridden metropolises. The urban transport crisis of this city involves severe traffic congestion, the disparity in mass transport services on changing peripheral land uses, route overlapping, lowering of travel speed and faulty implementation of governmental plans as mostly induced by rapid growth of private vehicles on limited road space with huge carbon footprint. Therefore the paper will critically analyze the extant road network pattern for improving regional connectivity and accessibility, assess the degree of congestion, identify the deviation from demand and supply balance and finally evaluate the emerging alternate transport options as promoted by the government. For this purpose, linear, nodal and spatial transport network have been assessed based on certain selected indices viz. Road Degree, Traffic Volume, Shimbel Index, Direct Bus Connectivity, Average Travel and Waiting Tine Indices, Route Variety, Service Frequency, Bus Intensity, Concentration Analysis, Delay Rate, Quality of Traffic Transmission, Lane Length Duration Index and Modal Mix. Total 20 Traffic Intersection Points (TIPs) have been selected for the measurement of nodal accessibility. Critical Congestion Zones (CCZs) are delineated based on one km buffer zones of each TIP for congestion pattern analysis. A total of 480 bus routes are assessed for identifying the deficiency in network planning. Apart from bus services, the combined effects of other mass and para transit modes, containing metro rail, auto, cab and ferry services, are also analyzed. Based on systematic random sampling method, a total of 1500 daily urban passengers’ perceptions were studied for checking the ground realities. The outcome of this research identifies the spatial disparity among the 15 boroughs of the city with severe route overlapping and congestion problem. North and Central Kolkata-based mass transport services exceed the transport strength of south and peripheral Kolkata. Faulty infrastructural condition, service inadequacy, economic loss and workers’ inefficiency are the most dominant reasons behind the defective mass transport network plan. Hence there is an urgent need to revive the extant road based mass transport system of this city by implementing a holistic management approach by upgrading traffic infrastructure, designing new roads, better cooperation among different mass transport agencies, better coordination of transport and changing land use policies, large increase in funding and finally general passengers’ awareness.

Keywords: carbon footprint, critical congestion zones, direct bus connectivity, integrated transport development

Procedia PDF Downloads 273
4316 Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient

Authors: Qingqing Zhao, Junhong Bai

Abstract:

To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05).

Keywords: carbon content and stock, nitrogen content and stock, salinity, coastal wetland

Procedia PDF Downloads 316
4315 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 41
4314 Green Supply Chain Design: A Mathematical Modeling Approach

Authors: Nusrat T. Chowdhury

Abstract:

Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.

Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade

Procedia PDF Downloads 239
4313 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis

Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci

Abstract:

Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.

Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification

Procedia PDF Downloads 78
4312 Assessment of Energy Efficiency and Life Cycle Greenhouse Gas Emission of Wheat Production on Conservation Agriculture to Achieve Soil Carbon Footprint in Bangladesh

Authors: MD Mashiur Rahman, Muhammad Arshadul Haque

Abstract:

Emerging conservation agriculture (CA) is an option for improving soil health and maintaining environmental sustainability for intensive agriculture, especially in the tropical climate. Three years lengthy research experiment was performed in arid climate from 2018 to 2020 at research field of Bangladesh Agricultural Research Station (RARS)F, Jamalpur (soil texture belongs to Agro-Ecological Zone (AEZ)-8/9, 24˚56'11''N latitude and 89˚55'54''E longitude and an altitude of 16.46m) to evaluate the effect of CA approaches on energy use efficiency and a streamlined life cycle greenhouse gas (GHG) emission of wheat production. For this, the conservation tillage practices (strip tillage (ST) and minimum tillage (MT)) were adopted in comparison to the conventional farmers' tillage (CT), with retained a fixed level (30 cm) of residue retention. This study examined the relationship between energy consumption and life cycle greenhouse gas (GHG) emission of wheat cultivation in Jamalpur region of Bangladesh. Standard energy equivalents megajoules (MJ) were used to measure energy from different inputs and output, similarly, the global warming potential values for the 100-year timescale and a standard unit kilogram of carbon dioxide equivalent (kg CO₂eq) was used to estimate direct and indirect GHG emissions from the use of on-farm and off-farm inputs. Farm efficiency analysis tool (FEAT) was used to analyze GHG emission and its intensity. A non-parametric data envelopment (DEA) analysis was used to estimate the optimum energy requirement of wheat production. The results showed that the treatment combination having MT with optimum energy inputs is the best suit for cost-effective, sustainable CA practice in wheat cultivation without compromising with the yield during the dry season. A total of 22045.86 MJ ha⁻¹, 22158.82 MJ ha⁻¹, and 23656.63 MJ ha⁻¹ input energy for the practice of ST, MT, and CT was used in wheat production, and output energy was calculated as 158657.40 MJ ha⁻¹, 162070.55 MJ ha⁻¹, and 149501.58 MJ ha⁻¹, respectively; where energy use efficiency/net energy ratio was found to be 7.20, 7.31 and 6.32. Among these, MT is the most effective practice option taken into account in the wheat production process. The optimum energy requirement was found to be 18236.71 MJ ha⁻¹ demonstrating for the practice of MT that if recommendations are followed, 18.7% of input energy can be saved. The total greenhouse gas (GHG) emission was calculated to be 2288 kgCO₂eq ha⁻¹, 2293 kgCO₂eq ha⁻¹ and 2331 kgCO₂eq ha⁻¹, where GHG intensity is the ratio of kg CO₂eq emission per MJ of output energy produced was estimated to be 0.014 kg CO₂/MJ, 0.014 kg CO₂/MJ and 0.015 kg CO₂/MJ in wheat production. Therefore, CA approaches ST practice with 30 cm residue retention was the most effective GHG mitigation option when the net life cycle GHG emission was considered in wheat production in the silt clay loam soil of Bangladesh. In conclusion, the CA approaches being implemented for wheat production involving MT practice have the potential to mitigate global warming potential in Bangladesh to achieve soil carbon footprint, where the life cycle assessment approach needs to be applied to a more diverse range of wheat-based cropping systems.

Keywords: conservation agriculture and tillage, energy use efficiency, life cycle GHG, Bangladesh

Procedia PDF Downloads 102
4311 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 147