Search results for: genome scale model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21722

Search results for: genome scale model

21602 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 317
21601 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 480
21600 Study of Evaluation Model Based on Information System Success Model and Flow Theory Using Web-scale Discovery System

Authors: June-Jei Kuo, Yi-Chuan Hsieh

Abstract:

Because of the rapid growth of information technology, more and more libraries introduce the new information retrieval systems to enhance the users’ experience, improve the retrieval efficiency, and increase the applicability of the library resources. Nevertheless, few of them are discussed the usability from the users’ aspect. The aims of this study are to understand that the scenario of the information retrieval system utilization, and to know why users are willing to continuously use the web-scale discovery system to improve the web-scale discovery system and promote their use of university libraries. Besides of questionnaires, observations and interviews, this study employs both Information System Success Model introduced by DeLone and McLean in 2003 and the flow theory to evaluate the system quality, information quality, service quality, use, user satisfaction, flow, and continuing to use web-scale discovery system of students from National Chung Hsing University. Then, the results are analyzed through descriptive statistics and structural equation modeling using AMOS. The results reveal that in web-scale discovery system, the user’s evaluation of system quality, information quality, and service quality is positively related to the use and satisfaction; however, the service quality only affects user satisfaction. User satisfaction and the flow show a significant impact on continuing to use. Moreover, user satisfaction has a significant impact on user flow. According to the results of this study, to maintain the stability of the information retrieval system, to improve the information content quality, and to enhance the relationship between subject librarians and students are recommended for the academic libraries. Meanwhile, to improve the system user interface, to minimize layer from system-level, to strengthen the data accuracy and relevance, to modify the sorting criteria of the data, and to support the auto-correct function are required for system provider. Finally, to establish better communication with librariana commended for all users.

Keywords: web-scale discovery system, discovery system, information system success model, flow theory, academic library

Procedia PDF Downloads 103
21599 Eco Scale: A Tool for Assessing the Greenness of Pharmaceuticals Analysis

Authors: Heba M. Mohamed

Abstract:

Owing to scientific and public concern about health and environment and seeking for a better quality of life; “Green”, “Environmentally” and “Eco” friendly practices have been presented and implemented in different research areas. Subsequently, researchers’ attention is drawn in the direction of greening the analytical methodologies and taking the Green Analytical Chemistry principles (GAC) into consideration. It is of high importance to appraise the environmental impact of each of the implemented green approaches. Compared to the other traditional green metrics (E-factor, Atom economy and the process profile), the eco scale is the optimum choice to assess the environmental impact of the analytical procedures used for pharmaceuticals analysis. For analytical methodologies, Eco-Scale is calculated by allotting penalty points to any factor of the used analytical procedure which disagree and not match with the model green analysis, where the perfect green analysis has its Eco-Scale value of 100. In this work, calculation and comparison of the Eco-Scale for some of the reported green analytical methods was done, to accentuate their greening potentials. Where the different scores can reveal how green the method is, compared to the ideal value. The study emphasizes that greenness measurement is not only about the waste quantity determination but also dictates a holistic scheme, considering all factors.

Keywords: eco scale, green analysis, environmentally friendly, pharmaceuticals analysis

Procedia PDF Downloads 438
21598 Black-Brown and Yellow-Brown-Red Skin Pigmentation Elements are Shared in Common: Using Art and Science for Multicultural Education

Authors: Mary Kay Bacallao

Abstract:

New research on the human genome has revealed secrets to the variation in skin pigmentation found in all human populations. Application of this research to multicultural education has a profound effect on students from all backgrounds. This paper identifies the four locations in the human genome that code for variation in skin pigmentation worldwide. The research makes this new knowledge accessible to students of all ages as they participate in an art project that brings these scientific multicultural concepts to life. Students participate in the application of breakthrough scientific principles through hands-on art activities where they simulate the work of the DNA coding to create their own skin tone using the colors expressed to varying degrees in every people group. As students create their own artwork handprint from the pallet of colors, they realize that each color on the pallet is essential to creating every tone of skin. This research project serves to bring people together and appreciate the variety and diversity in skin tones. As students explore the variations, they create pigmentation with the use of the eumelanins, which are the black-brown sources of pigmentation, and the pheomelanins, which are the yellow-reddish-brown sources of pigmentation. The research project dispels myths about skin tones that have divided people in the past. As a group project, this research leads to greater appreciation and understanding of the diverse family groups.

Keywords: diversity, multicultural, skin pigmentation, eumelanins, pheomelanins, handprint, artwork, science, genome, human

Procedia PDF Downloads 67
21597 Student's Perception on the Relationship between Teacher's Supportive Teaching, Thwarting Teaching, Their Needed Satisfaction, Frustration, and Motivational Regulation at Vocational High School

Authors: Chi C. Lin, Chih. H. Hsieh, Chi H. Lin

Abstract:

The present study attempted to develop and test a self-determination theory dual-process model among teachers’ need supportive teaching, need thwarting teaching, and students’ need satisfaction, need frustration, and motivation regulation on vocational high school learners. This study adopted a survey questionnaire method. Participants were 736 (472 males, 264 females) vocational high school students in Taiwan. The instrument included five sets: the Teachers’ Need Supportive Teaching Scale, the Teachers’ Need Thwart Teaching Scale, the Need Satisfaction Scale, the Need Frustration Scale, and the Motivational Regulation Scale. A Structural equation modeling was used for the data analyses, results indicated that (1) teachers’ need supportive teaching had direct effects on students’ need satisfaction; (2) teachers’ thwarting teaching also had a direct effect on students’ need frustration; (3) teachers’ need supportive teaching had a negative direct effect on students’ need frustration; (4) students’ need satisfaction had direct effects on their autonomous motivation and control motivation, respectively; (5) students’ need frustration also had direct effects on their control motivation and motivation, respectively; (6) the model proposed in this study fit mostly with the empirical data.

Keywords: motivational regulation, need satisfaction, need frustration, supportive teaching, thwart teaching, vocational high school students

Procedia PDF Downloads 133
21596 Space Tourism Pricing Model Revolution from Time Independent Model to Time-Space Model

Authors: Kang Lin Peng

Abstract:

Space tourism emerged in 2001 and became famous in 2021, following the development of space technology. The space market is twisted because of the excess demand. Space tourism is currently rare and extremely expensive, with biased luxury product pricing, which is the seller’s market that consumers can not bargain with. Spaceship companies such as Virgin Galactic, Blue Origin, and Space X have been charged space tourism prices from 200 thousand to 55 million depending on various heights in space. There should be a reasonable price based on a fair basis. This study aims to derive a spacetime pricing model, which is different from the general pricing model on the earth’s surface. We apply general relativity theory to deduct the mathematical formula for the space tourism pricing model, which covers the traditional time-independent model. In the future, the price of space travel will be different from current flight travel when space travel is measured in lightyear units. The pricing of general commodities mainly considers the general equilibrium of supply and demand. The pricing model considers risks and returns with the dependent time variable as acceptable when commodities are on the earth’s surface, called flat spacetime. Current economic theories based on the independent time scale in the flat spacetime do not consider the curvature of spacetime. Current flight services flying the height of 6, 12, and 19 kilometers are charging with a pricing model that measures time coordinate independently. However, the emergence of space tourism is flying heights above 100 to 550 kilometers that have enlarged the spacetime curvature, which means tourists will escape from a zero curvature on the earth’s surface to the large curvature of space. Different spacetime spans should be considered in the pricing model of space travel to echo general relativity theory. Intuitively, this spacetime commodity needs to consider changing the spacetime curvature from the earth to space. We can assume the value of each spacetime curvature unit corresponding to the gradient change of each Ricci or energy-momentum tensor. Then we know how much to spend by integrating the spacetime from the earth to space. The concept is adding a price p component corresponding to the general relativity theory. The space travel pricing model degenerates into a time-independent model, which becomes a model of traditional commodity pricing. The contribution is that the deriving of the space tourism pricing model will be a breakthrough in philosophical and practical issues for space travel. The results of the space tourism pricing model extend the traditional time-independent flat spacetime mode. The pricing model embedded spacetime as the general relativity theory can better reflect the rationality and accuracy of space travel on the universal scale. The universal scale from independent-time scale to spacetime scale will bring a brand-new pricing concept for space traveling commodities. Fair and efficient spacetime economics will also bring to humans’ travel when we can travel in lightyear units in the future.

Keywords: space tourism, spacetime pricing model, general relativity theory, spacetime curvature

Procedia PDF Downloads 128
21595 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid

Procedia PDF Downloads 184
21594 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
21593 A Cosmic Time Dilation Model for the Week of Creation

Authors: Kwok W. Cheung

Abstract:

A scientific interpretation of creation reconciling the beliefs of six literal days of creation and a 13.7-billion-year-old universe currently perceived by most modern cosmologists is proposed. We hypothesize that the reference timeframe of God’s creation is associated with some cosmic time different from the earth's time. We show that the scale factor of earth time to cosmic time can be determined by the solution of the Friedmann equations. Based on this scale factor and some basic assumptions, we derive a Cosmic Time Dilation model that harmonizes the literal meaning of creation days and scientific discoveries with remarkable accuracy.

Keywords: cosmological expansion, time dilation, creation, genesis, relativity, Big Bang, biblical hermeneutics

Procedia PDF Downloads 91
21592 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach

Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist

Abstract:

Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.

Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.

Procedia PDF Downloads 77
21591 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 130
21590 Solar Energy Technology Adoption; A Vignette Study for the Up-Scale Residential Sector in Egypt

Authors: Mazen Zaki, Sherwat E. Ibrahim

Abstract:

Renewable energy has become a very important and critical topic all around the world due to the limited resources that led to shifting to the trend of renewable energy and its integration with the conventional ones. This paper investigates the adoption of the solar energy technology for up-scale residential sector in Cairo, Egypt. The technology acceptance model uses several stakeholder points’ of views to develop vignettes to be used in examining the intention and attitude of the householders to adopt the solar energy technology.

Keywords: solar energy, technology acceptance model, TAM, stakeholder analysis, vignette, residential sector

Procedia PDF Downloads 145
21589 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer

Authors: Binder Hans

Abstract:

Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.

Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas

Procedia PDF Downloads 148
21588 Implementation of Total Quality Management in a Small Scale Industry: A Case Study

Authors: Soham Lalwala, Ronita Singh, Yaman Pattanaik

Abstract:

In the present scenario of globalization and privatization, it becomes difficult for small scale industries to sustain due to rapidly increasing competition. In a developing country, most of the gross output is generally obtained from small scale industries. Thus, quality plays a vital role in maintaining customer satisfaction. Total quality management (TQM) is an approach which enables employees to focus on quality rather quantity, further improving the competitiveness, effectiveness and flexibility of the whole organization. The objective of the paper is to present the application of TQM and develop a TQM Model in a small scale industry of narrow fabrics in Surat, India named ‘Rajdhani Lace & Borders’. Further, critical success factors relating all the fabric processes involved were identified. The data was collected by conducting a questionnaire survey. After data was collected, critical areas were visualized using different tools of TQM such as cause and effect diagram, control charts and run charts. Overall, responses were analyzed, and factor analysis was used to develop the model. The study presented here will aid the management of the above-mentioned industry in identifying the weaker areas and thus give a plausible solution to improve the total productivity of the firm along with effective utilization of resources and better customer satisfaction.

Keywords: critical success factors, narrow fabrics, quality, small scale industries, total quality management (TQM)

Procedia PDF Downloads 253
21587 Data Access, AI Intensity, and Scale Advantages

Authors: Chuping Lo

Abstract:

This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.

Keywords: digital intensity, digital divide, international trade, scale of economics

Procedia PDF Downloads 68
21586 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 459
21585 Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species

Authors: Jafar Ahmadi, Zhohreh Asiaban, Sedigheh Fabriki Ourang

Abstract:

Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max, and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.

Keywords: BES1/BZR1, brassinosteroids, phylogenetic analysis, transcription factor

Procedia PDF Downloads 339
21584 Assessment of Politeness Behavior on Communicating: Validation of Scale through Exploratory Factor Analysis and Confirmatory Factor Analysis

Authors: Abdullah Pandang, Mantasiah Rivai, Nur Fadhilah Umar, Azam Arifyadi

Abstract:

This study aims to measure the validity of the politeness behaviour scale and obtain a model that fits the scale. The researcher developed the Politeness Behavior on Communicating (PBC) scale. The research method uses descriptive quantitative by developing the PBC scale. The population in this study were students in three provinces, namely South Sulawesi, West Sulawesi, and Central Sulawesi, recorded in the 2022/2023 academic year. The sampling technique used stratified random sampling by determining the number of samples using the Slovin formula. The sample of this research is 1200 students. This research instrument uses the PBC scale, which consists of 5 (five) indicators: self-regulation of compensation behaviour, self-efficacy of compensation behaviour, fulfilment of social expectations, positive feedback, and no strings attached. The PBC scale consists of 34 statement items. The data analysis technique is divided into two types: the validity test on the correlated item values and the item reliability test referring to Cronbach's and McDonald's alpha standards using the JASP application. Furthermore, the data were analyzed using confirmatory factor analysis (CFA) and exploratory factor analysis (EFA). The results showed that the adaptation of the Politeness Behavior on Communicating (PBC) scale was on the Fit Index with a chi-square value (711,800/375), RMSEA (0.53), GFI (0.990), CFI (0.987), GFI (0.985).

Keywords: polite behavior in communicating, positive communication, exploration factor analysis, confirmatory factor analysis

Procedia PDF Downloads 124
21583 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics

Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu

Abstract:

Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.

Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 365
21582 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus

Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din

Abstract:

Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.

Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA

Procedia PDF Downloads 155
21581 COVID-19 Genomic Analysis and Complete Evaluation

Authors: Narin Salehiyan, Ramin Ghasemi Shayan

Abstract:

In order to investigate coronavirus RNA replication, transcription, recombination, protein processing and transport, virion assembly, the identification of coronavirus-specific cell receptors, and polymerase processing, the manipulation of coronavirus clones and complementary DNAs (cDNAs) of defective-interfering (DI) RNAs is the subject of this chapter. The idea of the Covid genome is nonsegmented, single-abandoned, and positive-sense RNA. When compared to other RNA viruses, its size is significantly greater, ranging from 27 to 32 kb. The quality encoding the enormous surface glycoprotein depends on 4.4 kb, encoding a forcing trimeric, profoundly glycosylated protein. This takes off exactly 20 nm over the virion envelope, giving the infection the appearance-with a little creative mind of a crown or coronet. Covid research has added to the comprehension of numerous parts of atomic science as a general rule, like the component of RNA union, translational control, and protein transport and handling. It stays a fortune equipped for creating startling experiences.

Keywords: covid-19, corona, virus, genome, genetic

Procedia PDF Downloads 72
21580 Scale Effects on the Wake Airflow of a Heavy Truck

Authors: Aude Pérard Lecomte, Georges Fokoua, Amine Mehel, Anne Tanière

Abstract:

Air quality in urban areas is deteriorated by pollution, mainly due to the constant increase of the traffic of different types of ground vehicles. In particular, particulate matter pollution with important concentrations in urban areas can cause serious health issues. Characterizing and understanding particle dynamics is therefore essential to establish recommendations to improve air quality in urban areas. To analyze the effects of turbulence on particulate pollutants dispersion, the first step is to focus on the single-phase flow structure and turbulence characteristics in the wake of a heavy truck model. To achieve this, Computational Fluid Dynamics (CFD) simulations were conducted with the aim of modeling the wake airflow of a full- and reduced-scale heavy truck. The Reynolds Average Navier-Stokes (RANS) approach with the Reynolds Stress Model (RSM)as the turbulence model closure was used. The simulations highlight the apparition of a large vortex coming from the under trailer. This vortex belongs to the recirculation region, located in the near-wake of the heavy truck. These vortical structures are expected to have a strong influence on particle dynamics that are emitted by the truck.

Keywords: CDF, heavy truck, recirculation region, reduced scale

Procedia PDF Downloads 218
21579 Analysis of Effect of Microfinance on the Profit Level of Small and Medium Scale Enterprises in Lagos State, Nigeria

Authors: Saheed Olakunle Sanusi, Israel Ajibade Adedeji

Abstract:

The study analysed the effect of microfinance on the profit level of small and medium scale enterprises in Lagos. The data for the study were obtained by simple random sampling, and total of one hundred and fifty (150) small and medium scale enterprises (SMEs) were sampled for the study. Seventy-five (75) each are microfinance users and non-users. Data were analysed using descriptive statistics, logit model, t-test and ordinary least square (OLS) regression. The mean profit of the enterprises using microfinance is ₦16.8m, while for the non-users of microfinance is ₦5.9m. The mean profit of microfinance users is statistically different from the non-users. The result of the logit model specified for the determinant of access to microfinance showed that three of specified variables- educational status of the enterprise head, credit utilisation and volume of business investment are significant at P < 0.01. Enterprises with many years of experience, highly educated enterprise heads and high volume of business investment have more potential access to microfinance. The OLS regression model indicated that three parameters namely number of school years, the volume of business investment and (dummy) participation in microfinance were found to be significant at P < 0.05. These variables are therefore significant determinants of impacts of microfinance on profit level in the study area. The study, therefore, concludes and recommends that to improve the status of small and medium scale enterprises for an increase in profit, the full benefit of access to microfinance can be enhanced through investment in social infrastructure and human capital development. Also, concerted efforts should be made to encouraged non-users of microfinance among SMEs to use it in order to boost their profit.

Keywords: credit utilisation, logit model, microfinance, small and medium enterprises

Procedia PDF Downloads 205
21578 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model

Authors: Can Huang, Xiaoliang Wang, Qingquan Liu

Abstract:

Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.

Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH

Procedia PDF Downloads 64
21577 Unraveling the Evolution of Mycoplasma Hominis Through Its Genome Sequence

Authors: Boutheina Ben Abdelmoumen Mardassi, Salim Chibani, Safa Boujemaa, Amaury Vaysse, Julien Guglielmini, Elhem Yacoub

Abstract:

Background and aim: Mycoplasma hominis (MH) is a pathogenic bacterium belonging to the Mollicutes class. It causes a wide range of gynecological infections and infertility among adults. Recently, we have explored for the first time the phylodistribution of Tunisian M. hominis clinical strains using an expanded MLST. We have demonstrated their distinction into two pure lineages, which each corresponding to a specific pathotype: genital infections and infertility. The aim of this project is to gain further insight into the evolutionary dynamics and the specific genetic factors that distinguish MH pathotypes Methods: Whole genome sequencing of Mycoplasma hominis clinical strains was performed using illumina Miseq. Denovo assembly was performed using a publicly available in-house pipeline. We used prokka to annotate the genomes, panaroo to generate the gene presence matrix and Jolytree to establish the phylogenetic tree. We used treeWAS to identify genetic loci associated with the pathothype of interest from the presence matrix and phylogenetic tree. Results: Our results revealed a clear categorization of the 62 MH clinical strains into two distinct genetic lineages, with each corresponding to a specific pathotype.; gynecological infections and infertility[AV1] . Genome annotation showed that GC content is ranging between 26 and 27%, which is a known characteristic of Mycoplasma genome. Housekeeping genes belonging to the core genome are highly conserved among our strains. TreeWas identified 4 virulence genes associated with the pathotype gynecological infection. encoding for asparagine--tRNA ligase, restriction endonuclease subunit S, Eco47II restriction endonuclease, and transcription regulator XRE (involved in tolerance to oxidative stress). Five genes have been identified that have a statistical association with infertility, tow lipoprotein, one hypothetical protein, a glycosyl transferase involved in capsule synthesis, and pyruvate kinase involved in biofilm formation. All strains harbored an efflux pomp that belongs to the family of multidrug resistance ABC transporter, which confers resistance to a wide range of antibiotics. Indeed many adhesion factors and lipoproteins (p120, p120', p60, p80, Vaa) have been checked and confirmed in our strains with a relatively 99 % to 96 % conserved domain and hypervariable domain that represent 1 to 4 % of the reference sequence extracted from gene bank. Conclusion: In summary, this study led to the identification of specific genetic loci associated with distinct pathotypes in M hominis.

Keywords: mycoplasma hominis, infertility, gynecological infections, virulence genes, antibiotic resistance

Procedia PDF Downloads 96
21576 Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness

Authors: J. M. Lee, W. R. Noh, C. Y. Kim, M. G. Lee

Abstract:

Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior.

Keywords: oxide scale, delamination, Fe analysis, roughness, thickness, stress state

Procedia PDF Downloads 344
21575 Genomic Surveillance of Bacillus Anthracis in South Africa Revealed a Unique Genetic Cluster of B- Clade Strains

Authors: Kgaugelo Lekota, Ayesha Hassim, Henriette Van Heerden

Abstract:

Bacillus anthracis is the causative agent of anthrax that is composed of three genetic groups, namely A, B, and C. Clade-A is distributed world-wide, while sub-clades B has been identified in Kruger National Park (KNP), South Africa. KNP is one of the endemic anthrax regions in South Africa with distinctive genetic diversity. Genomic surveillance of KNP B. anthracis strains was employed on the historical culture collection isolates (n=67) dated from the 1990’s to 2015 using a whole genome sequencing approach. Whole genome single nucleotide polymorphism (SNPs) and pan-genomics analysis were used to define the B. anthracis genetic population structure. This study showed that KNP has heterologous B. anthracis strains grouping in the A-clade with more prominent ABr.005/006 (Ancient A) SNP lineage. The 2012 and 2015 anthrax isolates are dispersed amongst minor sub-clades that prevail in non-stabilized genetic evolution strains. This was augmented with non-parsimony informative SNPs of the B. anthracis strains across minor sub-clades of the Ancient A clade. Pan-genomics of B. anthracis showed a clear distinction between A and B-clade genomes with 11 374 predicted clusters of protein coding genes. Unique accessory genes of B-clade genomes that included biosynthetic cell wall genes and multidrug resistant of Fosfomycin. South Africa consists of diverse B. anthracis strains with unique defined SNPs. The sequenced B. anthracis strains in this study will serve as a means to further trace the dissemination of B. anthracis outbreaks globally and especially in South Africa.

Keywords: bacillus anthracis, whole genome single nucleotide polymorphisms, pangenomics, kruger national park

Procedia PDF Downloads 150
21574 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 210
21573 Identification of Candidate Gene for Root Development and Its Association With Plant Architecture and Yield in Cassava

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: manihot esculenta crantz, plant architecture, dartseq, snp markers, genome-wide association study

Procedia PDF Downloads 95