Search results for: flexible lamina
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1143

Search results for: flexible lamina

1023 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications

Authors: Syed Kamran Sami, Saqib Siddiqui

Abstract:

In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.

Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor

Procedia PDF Downloads 281
1022 Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics

Authors: Pratik Pankaj Pawar

Abstract:

Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics.

Keywords: light weight building, carbyne, aerographite, geopolymer reinforced wood particles aggregate

Procedia PDF Downloads 58
1021 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading

Authors: C. Shalini Devi

Abstract:

This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.

Keywords: composite, stress concentration, finite element analysis, tensile strength

Procedia PDF Downloads 449
1020 A Step Towards Automating the Synthesis of a Scene Script

Authors: Americo Pereira, Ricardo Carvalho, Pedro Carvalho, Luis Corte-Real

Abstract:

Generating 3D content is a task mostly done by hand. It requires specific knowledge not only on how to use the tools for the task but also on the fundamentals of a 3D environment. In this work, we show that automatic generation of content can be achieved, from a scene script, by leveraging existing tools so that non-experts can easily engage in a 3D content generation without requiring vast amounts of time in exploring and learning how to use specific tools. This proposal carries several benefits, including flexible scene synthesis with different levels of detail. Our preliminary results show that the automatically generated content is comparable to the content generated by users with low experience in 3D modeling while vastly reducing the amount of time required for the generation and adds support to implement flexible scenarios for visual scene visualization.

Keywords: 3D virtualization, multimedia, scene script, synthesis

Procedia PDF Downloads 266
1019 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework

Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai

Abstract:

A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.

Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model

Procedia PDF Downloads 455
1018 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction

Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey

Abstract:

In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.

Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization

Procedia PDF Downloads 344
1017 Anlaytical Studies on Subgrade Soil Using Jute Geotextile

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 442
1016 An Intelligent Steerable Drill System for Orthopedic Surgery

Authors: Wei Yao

Abstract:

A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.

Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking

Procedia PDF Downloads 167
1015 Addressing Rural Health Challenges: A Flexible Modular Approach for Resilient Healthcare Services

Authors: Pariya Sheykhmaleki, Debajyoti Pati

Abstract:

Rural areas in the United States face numerous challenges in providing quality and assessable primary healthcare services, especially during emergencies such as natural disasters or pandemics. This study showcases a cutting-edge flexible module that aims to overcome these challenges by offering adaptable healthcare facilities capable of providing comprehensive health services in remote and disaster-prone regions. According to the Health Resources and Services Administration (HRSA), approximately 62 million Americans, or 1 in 5 individuals, live in areas designated as Health Professional Shortage Areas (HPSAs) for primary care. These areas are characterized by limited access to healthcare facilities, shortage of healthcare professionals, transportation barriers, inadequate healthcare infrastructure, higher rates of chronic diseases, mental health disparities, and limited availability of specialized care, including urgent circumstances like pandemics that can exacerbate this issue. To address these challenges, the literature study began by examining primary health solutions in very remote areas, e.g., spaceships, to identify the state-of-the-art technologies and the methods used to facilitate primary care needs. The literature study on flexibility in architecture and interior design was also adapted to develop a conceptual design for rural areas. The designed flexible module provides an innovative solution. This module can be prefabricated as all parts are standardized. The flexibility of the module allows the structure to be modified based on local and geographical requirements as well as the ability to expand as required. It has been designed to stand either by itself or work in tandem with public buildings. By utilizing sustainable approaches and flexible spatial configurations, the module optimizes the utilization of limited resources while ensuring efficient and effective healthcare delivery. Furthermore, the poster highlights the key features of this flexible module, including its ability to support telemedicine and telehealth services for all five levels of urgent care conditions, i.e., from facilitating fast tracks to supporting emergency room services, in two divided zones. The module's versatility enables its deployment in rural areas located far from urban centers and disaster-stricken regions, ensuring access to critical healthcare services in times of need. This module is also capable of responding in urban areas when the need for primary health becomes vastly urgent, e.g., during a pandemic. It emphasizes the module's potential to bridge the healthcare gap between rural and urban areas and mitigate the impact of rural health challenges.

Keywords: rural health, healthcare challenges, flexible modular design, telemedicine, telehealth

Procedia PDF Downloads 77
1014 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 428
1013 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 185
1012 Gastroprotective Effect of Copper Complex On Indomethacin-Induced Gastric Ulcer In Rats. Histological and Immunohistochemical Study

Authors: Heba M. Saad Eldien, Ola Abdel-Tawab Hussein, Ahmed Yassein Nassar

Abstract:

Background: Indomethacin is a non-steroidal anti inflammatory drug. Indomethacin induces an injury to gastrointestinal mucosa in experimental animals and humans and their use is associated with a significant risk of hemorrhage, erosions and perforation of both gastric and intestinal ulcers. The anti-inflammatory action of copper complexes is an important activity of their anti-ulcer effect achieved by their intermediary role as a transport form of copper that allow activation of the several copper-dependent enzymes. Therefore, several copper complexes were synthesized and investigated as promising alternative anti-ulcer therapy. Aim of the work: The purpose of this study was to evaluate a copper chelating complex consisting of egg albumin and copper as one of the copper peptides that can be used as anti-inflammatory agent and effective in ameliorates the hazards of the indomethacin on the histological structure of the fundus of the stomach that could be added to raise the efficacy of the currently used simple and cheap gastric anti-inflammatory drug mucogel. Material &methods: This study was carried out on 40 adult male albino rats,divided equally into 4 groups;Group I(control group) received distilled water,Group II(indomethacin treated group) received (25 mg/kg body weight, oral intubation) once, Group III (mucogel treated group)2 mL/rat once daily, oral incubation, Group IV(copper complex group) 1 mL /rat of 30 gm of copper albumin complex was mixed uniformly with mucogel to 100 mL. Treatment has been started six hour after Induction of Ulcers and continued till the 3rd day. The animals sacrificed and was processed for light, transmission electron microscopy(TEM) and immunostaining for inducible nitric oxide synthase(iNOS). Results: Fundic mucosa of group II, showed exfoliation of epithelial cells lining the gland, discontinuity of surface epithelial cells (ulcer formation), vacuolation and detachment of cells, eosinophilic infiltration and congestion of blood vessels in the lamina propria and submucosa. There was thickening and disarrangement of mucosa, weak positive reaction for PAS and marked increase in the collagen fibers lamina propria and the submucosa of the fundus. TEM revealed degeneration of cheif and parietal cells.Marked increase positive reactive of iNOS in all cells of the fundic gland. Group III showed reconstruction of gastric gland with cystic dilatation and vacuolation, moderate decrease of collagen fibers, reduced the intensity of iNOS while in Group IV healthy mucosa with normal surface lining epithelium and fundic glands, strong positive reaction for PAS, marked decrease of collagen fibers and positive reaction for iNOS. TEM revealed regeneration of cheif and parietal cells. Conclusion: Co treatment of copper-albumin complex seems to be useful for gastric ulcer treatment and ameliorates most of hazards of indomethacin.

Keywords: copper complex, gastric ulcer, indomethacin, rat

Procedia PDF Downloads 339
1011 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method

Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad

Abstract:

The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.

Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots

Procedia PDF Downloads 337
1010 Problems of Using Mobile Photovoltaic Installations

Authors: Ksenia Siadkowska, Łukasz Grabowski, Michał Gęca

Abstract:

The dynamic development of photovoltaics in the 21st century has resulted in more possibilities for using photovoltaic systems. In order to reduce emissions, a retrofitting of vehicles with photovoltaic modules has recently become increasingly popular. Preparing such an installation, however, requires professional knowledge and compliance with safety rules. The paper discusses the advantages and disadvantages of some types of flexible photovoltaic modules that can be applied to mobile installations, types and causes of damage to photovoltaic modules as well as the most frequent types of misinstallation. Our attention has been drawn to the risk of fire caused by misintallation or defective insulation and the need to closely monitor mobile installations, for example by a non-destructive testing with a thermal imaging camera. The paper also presents certain selected results of the research conducted at the Lublin University of Technology. This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS2/A6/16/2013.

Keywords: flexible PV module, mobile PV module, photovoltaic module, photovoltaic

Procedia PDF Downloads 252
1009 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: earth pressure, earthquake, 2-DOF model, Plaxis, retaining walls, wall movement

Procedia PDF Downloads 540
1008 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 328
1007 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 88
1006 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements

Authors: Mohammad R. Bhuyan, Mohammad J. Khattak

Abstract:

Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.

Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement

Procedia PDF Downloads 166
1005 Flexible Development and Calculation of Contract Logistics Services

Authors: T. Spiegel, J. Siegmann, C. F. Durach

Abstract:

Challenges resulting from an international and dynamic business environment are increasingly being passed on from manufacturing companies to external service providers. Especially providers of complex, customer-specific industry services have to cope with continuously changing requirements. This is particularly true for contract logistics service providers. They are forced to develop efficient and highly flexible structures and strategies to meet their customer’s needs. One core element they have to focus on is the reorganization of their service development and sales process. Based on an action research approach, this study develops and tests a concept to streamline tender management for contract logistics service providers. The concept of modularized service architecture is deployed in order to derive a practice-oriented approach for the modularization of complex service portfolios and the design of customized quotes. These findings are evaluated regarding their applicability in other service sectors and practical recommendations are given.

Keywords: contract logistics, modularization, service development, tender management

Procedia PDF Downloads 409
1004 Effects of Flexible Flat Feet on Electromyographic Activity of Erector Spinae and Multifidus

Authors: Abdallah Mohamed Kamel Mohamed Ali, Samah Saad Zahran, Mohamed Hamed Rashad

Abstract:

Background: Flexible flatfoot (FFF) has been considered as a risk factor for several lower limb injuries and mechanical low back pain. This was attributed to the dysfunction of the lumbopelvic-hip complex musculature. Objective: To investigate the influence of FFF on electromyographic activities of erector spinae and multifidus. Methods: A cross-section study was held between an FFF group (20 subjects) and a normal foot group (20 subjects). A surface electromyography was used to assess the electromyographic activity of erector spinae and multifidus. Group differences were assessed by the T-test. Results: There was a significant increase in EMG activities of erector spinae and multifidus in the FFF group compared with the normal group. Conclusion: There is an increase in EMG activities in erector spinae and multifidus in FFF subjects compared with normal subjects.

Keywords: electromyography, flatfoot, low back pain, paraspinal muscles

Procedia PDF Downloads 214
1003 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode

Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen

Abstract:

High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.

Keywords: supercapacitor, CuO, RGO, lithium

Procedia PDF Downloads 181
1002 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors

Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang

Abstract:

Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.

Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor

Procedia PDF Downloads 430
1001 Experimental Study of Flow Characteristics for a Cylinder with Respect to Attached Flexible Strip Body of Various Reynolds Number

Authors: S. Teksin, S. Yayla

Abstract:

The aim of the present study was to investigate details of flow structure in downstream of a circular cylinder base mounted on a flat surface in a rectangular duct with the dimensions of 8000 x 1000 x 750 mm in deep water flow for the Reynolds number 2500, 5000 and 7500. A flexible strip was attached to behind the cylinder and compared the bare body. Also, it was analyzed that how boundary layer affects the structure of flow around the cylinder. Diameter of the cylinder was 60 mm and the length of the flexible splitter plate which had a certain modulus of elasticity was 150 mm (L/D=2.5). Time-averaged velocity vectors, vortex contours, streamwise and transverse velocity components were investigated via Particle Image Velocimetry (PIV). Velocity vectors and vortex contours were displayed through the sections in which boundary layer effect was not present. On the other hand, streamwise and transverse velocity components were monitored for both cases, i.e. with and without boundary layer effect. Experiment results showed that the vortex formation occured in a larger area for L/D=2.5 and the point where the vortex was maximum from the base of the cylinder was shifted. Streamwise and transverse velocity component contours were symmetrical with reference to the center of the cylinder for all cases. All Froud numbers based on the Reynolds numbers were quite smaller than 1. The flow characteristics of velocity component values of attached circular cylinder arrangement decreased approximately twenty five percent comparing to bare cylinder case.

Keywords: partical image velocimetry, elastic plate, cylinder, flow structure

Procedia PDF Downloads 314
1000 An Overview of Corroded Pipe Repair Techniques Using Composite Materials

Authors: Lim Kar Sing, Siti Nur Afifah Azraai, Norhazilan Md Noor, Nordin Yahaya

Abstract:

Polymeric composites are being increasingly used as repair material for repairing critical infrastructures such as building, bridge, pressure vessel, piping and pipeline. Technique in repairing damaged pipes is one of the major concerns of pipeline owners. Considerable researches have been carried out on the repair of corroded pipes using composite materials. This article attempts a short review of the subject matter to provide insight into various techniques used in repairing corroded pipes, focusing on a wide range of composite repair systems. These systems including pre-cured layered, flexible wet lay-up, pre-impregnated, split composite sleeve and flexible tape systems. Both advantages and limitations of these repair systems were highlighted. Critical technical aspects have been discussed through the current standards and practices. Research gaps and future study scopes in achieving more effective design philosophy are also presented.

Keywords: composite materials, pipeline, repair technique, polymers

Procedia PDF Downloads 510
999 Productivity, Labour Flexibility, and Migrant Workers in Hotels: An Establishment and Departmental Level Analysis

Authors: Natina Yaduma, Allan Williams, Sangwon Park, Andrew Lockwood

Abstract:

This paper analyses flexible working, and the employment of migrants, as determinants of productivity in hotels. Controlling for the institutional environment, by focussing on a single firm, it analyses data on actual hours worked and outputs, on a weekly basis, over an 8 year period. The unusually disaggregated data allows the paper to examine not only inter-establishment, but also intra-establishment (departmental) variations in productivity, and to compare financial versus physical measures. The findings emphasise the complexity of productivity findings, sometimes contrasting evidence for establishments versus departments, and the positive but scale and measure-specific contributions of both the employment of migrants and flexible working, especially the utilisation of zero hours contracts.

Keywords: labour productivity, physical productivity, financial productivity, numerical flexibility, functional flexibility, migrant employment, cero-contract employment

Procedia PDF Downloads 362
998 Increasing National Health Insurance Scheme Enrolment in Ghana: Pro-Rata Insurance Premium Payment with Mobile Phone as the Answer

Authors: Joseph Marfo Boaheng, Daniel Ansong, Eugenia Amporfo

Abstract:

Health Insurance is proposed to provide financial protection against catastrophic health care cost arising from disease. Ghana has had a National Health Insurance Scheme (NHIS) since 2003 with the current enrolment/retention rate of 36%. The main goal of the scheme is to provide equity in the health sector as well as ensuring affordable health care for the poor. However, the current payment system is not flexible to attract significant proportion of the poor informal sector onto the scheme. Looking at the extensive use of mobiles in the Ghana where about 29,220,602.00 registered mobile phone lines are actively in used as of June 2014, paying health insurance premium through mobile phone could be feasible to attract larger proportion of the informal sector onto the scheme. Methodology: The quantitative cross-sectional survey was used to solicit the required information from 877 respondents living in Kumasi, the second capital city of Ghana. The magnitude of the effect of Pro-rata system (flexible payment terms) on NHIS enrollment rate was estimated with binary logistic regression model. Results: The odds for an individual to enroll onto NHIS with mobile phone increases about 2 times more when payment of insurance premium is on pro-rata basis ie. flexible payment terms (p=0.008, CI=1.212-3.565). Conclusion: The study advocates the National Health Insurance Authority consider this alternative payment system that has the potential of attracting a greater proportion of the informal sector to be enrolled or retained onto the scheme.

Keywords: enrollment, health insurance, mobile phone, pro-rata

Procedia PDF Downloads 394
997 Fabrication of Wearable Antennas through Thermal Deposition

Authors: Jeff Letcher, Dennis Tierney, Haider Raad

Abstract:

Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.

Keywords: thermal deposition, wearable antennas, bluetooth technology, flexible electronics

Procedia PDF Downloads 282
996 Towards Binder-Free and Self Supporting Flexible Supercapacitor from Carbon Nano-Onions and Their Composite with CuO Nanoparticles

Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida

Abstract:

Recognizing the upcoming era of carbon nanostructures and their revolutionary applications, we investigated the formation and supercapacitor application of highly pure and hydrophilic carbon nano-onions (CNOs) by economical one-step flame-synthesis procedure. The facile and scalable method uses easily available organic carbon source such as clarified butter, restricting the use of any catalyst, sophisticated instrumentation, high vacuum and post processing purification procedure. The active material was conformally coated onto a locally available cotton wipe by “sonicating and drying” process to obtain novel, lightweight, inexpensive, flexible, binder-free electrodes with strong adhesion between nanoparticles and porous wipe. This interesting electrode with CNO as the active material delivers a specific capacitance of 102.16 F/g, the energy density of 14.18 Wh/kg and power density of 2448 W/kg which are the highest values reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 as an electrolyte. Incorporation of CuO nanoparticles to these functionalized CNOs by one-step hydrothermal method add up to a significant specific capacitance of 420 F/g with deliverable energy and power density at 58.33 Wh/kg and 4228 W/kg, respectively. The free standing CNOs, as well as CNO-CuO composite electrode, showed an excellent cyclic performance and stability retaining 95 and 90% initial capacitance even after 5000 charge-discharge cycles at a current density of 5 A/g. This work presents a new platform for high performance supercapacitors for next generation wearable electronic devices.

Keywords: binder-free, flame synthesis, flexible, carbon nano-onion

Procedia PDF Downloads 197
995 Height of Highway Embankment for Tolerable Residual Settlement of Loose Cohesionless Subsoil Overlain by Stronger Soil

Authors: Sharifullah Ahmed

Abstract:

Residual settlement of cohesionless or non-plastic soil of different strength underlying highway embankment overlain by stronger soil layer highway embankment is studied. A parametric study is carried out for different height of embankment and for different ESAL factor. The sum of elastic settlements of cohesionless subsoil due to axle induced stress and due to self-weight of pavement layers is termed as the residual settlement. The values of residual settlement (Sr) for different heights of road embankment (He) are obtained and presented as design charts for different SPT Value (N60) and ESAL factor. For rigid pavement and flexible pavement in approach to bridge or culvert, the tolerable residual settlement is 0.100m. This limit is taken as 0.200m for flexible pavement in general sections of highway without approach to bridge or culvert. A simplified guideline is developed for design of highway embankment underlain by very loose to loose cohesionless subsoil overlain by a stronger soil layer for limiting value of the residual settlement. In the current research study range of ESAL factor is 1-10 and range of SPT value (N60) is 1-10. That is found that, ground improvement is not required if the overlying stronger layer is minimum 1.5m and 4.0m for general road section of flexible pavement except bridge or culvert approach and for rigid pavement or flexible pavement in bridge or culvert approach. Tables and charts are included in the prepared guideline to obtain minimum allowable height of highway embankment to limit the residual settlement with in mentioned tolerable limit. Allowable values of the embankment height (He) are obtained corresponding to tolerable or limiting level of the residual settlement of loose subsoil for different SPT value, thickness of stronger layer (d) and ESAL factor. The developed guideline is may be issued to be used in assessment of the necessity of ground improvement in case of cohesionless subsoil underlying highway embankment overlain by stronger subsoil layer for limiting residual settlement. The ground improvement is only to be required if the residual settlement of subsoil is more than tolerable limit.

Keywords: axle pressure, equivalent single axle load, ground improvement, highway embankment, tolerable residual settlement

Procedia PDF Downloads 127
994 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.

Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam

Procedia PDF Downloads 389