Search results for: energy demand model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25089

Search results for: energy demand model

24969 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery

Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim

Abstract:

In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.

Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter

Procedia PDF Downloads 641
24968 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 86
24967 Load Balancing Technique for Energy - Efficiency in Cloud Computing

Authors: Rani Danavath, V. B. Narsimha

Abstract:

Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.

Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission

Procedia PDF Downloads 449
24966 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers

Authors: Yungtai Lo

Abstract:

The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.

Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model

Procedia PDF Downloads 287
24965 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast

Authors: Helene Thieblemont, Fariborz Haghighat

Abstract:

Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.

Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage

Procedia PDF Downloads 271
24964 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China

Authors: Da LI, Peng Xu

Abstract:

Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.

Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation

Procedia PDF Downloads 25
24963 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies

Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang

Abstract:

This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.

Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory

Procedia PDF Downloads 279
24962 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models

Authors: Abdulrahman R. Alenezi

Abstract:

This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.

Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation

Procedia PDF Downloads 26
24961 The Environmental Challenges of Energy Generation and Usage in Nigeria

Authors: Aliyu Mohammed Lawal, Dahiru Ya'u Gital

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria are: Potential damage to the environment health by Co, Co2, Sox and Nox effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of Co2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: energy generation, environmental health, effluent gas emission, global warming, fossil fuel

Procedia PDF Downloads 459
24960 Economic and Technical Study for Hybrid (PV/Wind) Power System in the North East of Algeria

Authors: Nabila Louai, Fouad Khaldi, Houria Benharchache

Abstract:

In this paper, the case of meeting a household’s electrical energy demand with hybrid systems has been examined. The objective is to study technological feasibility and economic viability of the electrification project by a hybrid system (PV/ wind) of a residential home located in Batna-Algeria and to reduce the emissions from traditional power by using renewable energy. An autonomous hybrid wind/photovoltaic (PV)/battery power system and a PV/Wind grid connected system, has been carried out using Hybrid Optimization Model for Electric Renewable (HOMER) simulation software. As a result, it has been found that electricity from the grid can be supplied at a lower price than electricity from renewable energy at this moment.

Keywords: batna, household, hybrid system, renewable energy, techno-economy

Procedia PDF Downloads 601
24959 Issues in Travel Demand Forecasting

Authors: Huey-Kuo Chen

Abstract:

Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper.

Keywords: travel choices, B algorithm, entropy maximization, dynamic traffic assignment

Procedia PDF Downloads 458
24958 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida

Authors: K. Thakkar, C. Ghenai

Abstract:

An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation.

Keywords: energy planning, climate change mitigation assessment, integrated modeling approach, energy alternatives, and GHG emission reductions

Procedia PDF Downloads 443
24957 The Use of Energy Efficiency and Renewable Energy in Building for Sustainable Development

Authors: Zakariya B. H., Idris M. I., Jungudo M. A.

Abstract:

High energy consumptions of urban settlements in Nigeria are escalating due to strong population growth and migration as a result of crises. The demand for lighting, heating, ventilation and air conditioning (LHVAC) is becoming higher. Conversely, there is a poor electricity supply to both rural and urban settlement in Nigeria. Generators were mostly used in Nigeria as a source of energy for LHVAC. Energy efficiency can be defined as any measure taken to reduce the amount of energy consumed for heating ventilation and air-conditioning (HVAC), and house hold appliances like computers, stoves, refrigerators, televisions etc. The aim of the study was to minimize energy consumption in building through the integration of energy efficiency and renewable energy in building sector. Some of the energy efficient buildings within the study area were identified, the study covers there major cities of Nigeria namely, Abuja, Kaduna and Lagos city. The cost of investment on the energy efficiency and renewable energy was determined and compared with other fossil energy source for conventional building. Findings revealed that the low energy and energy efficient buildings in Nigeria are cheaper than the conventional ones. Based on the finding of the research, construction stake holders are strongly encouraged to abandon the conventional buildings and consider energy efficiency and renewable energy in buildings.

Keywords: energy, efficiency, LHVAC, sustainable development

Procedia PDF Downloads 581
24956 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity

Authors: Sara Mota Carmo

Abstract:

Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.

Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB

Procedia PDF Downloads 76
24955 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets

Authors: Margarida Plana

Abstract:

One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.

Keywords: end-users impacts, energy efficiency, energy savings, NZEB model

Procedia PDF Downloads 372
24954 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: dynamic system, lag on supply demand, market stability, supply demand model

Procedia PDF Downloads 295
24953 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 311
24952 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.

Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi

Abstract:

With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.

Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition

Procedia PDF Downloads 475
24951 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 292
24950 Improving Forecasting Demand for Maintenance Spare Parts: Case Study

Authors: Abdulaziz Afandi

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: neural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 127
24949 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia

Authors: Habib Alshuwaikhat, Nahid Hossain

Abstract:

Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.

Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation

Procedia PDF Downloads 496
24948 Economic Evaluation of Varying Scenarios to Fulfill the Regional Electricity Demand in Pakistan

Authors: Muhammad Shahid, Kafait Ullah, Kashif Imran, Arshad Mahmood, Maarten Arentsen

Abstract:

Poor planning and governance in the power sector of Pakistan have generated several issues ranging from gradual reliance on thermal-based expensive energy mix, supply shortages, unrestricted demand, subsidization, inefficiencies at different levels of the value chain and resultantly, the circular debt. This situation in the power sector has also hampered the growth of allied economic sectors. This study uses the Long-range Energy Alternative Planning (LEAP) system for electricity modelling of Pakistan from the period of 2016 to 2040. The study has first time in Pakistan forecasted the electricity demand at the provincial level. At the supply side, five scenarios Business as Usual Scenario (BAUS), Coal Scenario (CS), Gas Scenario (GS), Nuclear Scenario (NS) and Renewable Scenario (RS) have been analyzed based on the techno-economic and environmental parameters. The study has also included environmental externality costs for evaluating the actual costs and benefits of different scenarios. Contrary to the expectations, RS has a lower output than even BAUS. The study has concluded that the generation from RS has five times lesser costs than BAUS, CS, and GS. NS can also be an alternative for the sustainable future of Pakistan. Generation from imported coal is not a good option, however, indigenous coal with clean coal technologies should be promoted. This paper proposes energy planners of the country to devise incentives for the utilization of indigenous energy resources including renewables on priority and then clean coal to reduce the energy crises of Pakistan.

Keywords: economic evaluation, externality cost, penetration of renewable energy, regional electricity supply-demand planning

Procedia PDF Downloads 116
24947 Role of Renewable Energy in Foreign Policy of China

Authors: Alina Gilmanova

Abstract:

China’s dependency on coal for energy is causing pollution in China and abroad. To supply the increasing energy demand and being under the pressure from international society to reduce the emissions, China was pushed to develop renewable energy. The increasing subsidies in Renewable energy sources (RES) led not only to the price-cutting but also affecting the international trade in green technology sector. In order to evaluate the role of RES in foreign policy of China, I am going to give an (i) overview of RES development in China and examine the cooperation between China and (ii) developed, (ii) developing and emerging countries. The conclusive remarks are intended to address the question of how the present Chinese renewable energy development is impacting its foreign policy and international society.

Keywords: renewable energy, China, foreign affairs, brics, cooperation

Procedia PDF Downloads 638
24946 An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders

Authors: Arjun Paul, Adrijit Goswami

Abstract:

In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters.

Keywords: fuzzy deterioration rate, price discount on backorder, ramp type demand, shortage, time varying holding cost

Procedia PDF Downloads 197
24945 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System

Authors: P. K. Sarkar, Amit Kumar Jain

Abstract:

The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.

Keywords: urban transport, differential fares, congestion, transport demand management, elasticity

Procedia PDF Downloads 309
24944 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus

Authors: Mrinmoy Majumder, Apu Kumar Saha

Abstract:

The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.

Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering

Procedia PDF Downloads 479
24943 Modelling Patient Condition-Based Demand for Managing Hospital Inventory

Authors: Esha Saha, Pradip Kumar Ray

Abstract:

A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items.

Keywords: bed occupancy, hospital inventory, markov model, patient condition, pharmaceutical items

Procedia PDF Downloads 323
24942 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 313
24941 The Impact of Artificial Intelligence on Spare Parts Technology

Authors: Amir Andria Gad Shehata

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 63
24940 Energy Consumption and Energy Conservation Potential for HVAC System in Commercial Buildings Sector in India

Authors: Rishabh Agrawal, S. C. Kaushik, T. S. Bhatti

Abstract:

In order to reduce energy consumption for sustainable development, continuous energy consumption tracking of building energy systems are essential. In this paper an assessment study has been done to identify the energy consumption & energy conservation potential for commercial buildings sector in Karnataka state, India. There are a total of 326 commercial buildings in the state of Karnataka who has qualified as designated consumers (i.e., having a Contract Demand ≥ 600 KVA), was consider for the study. It has estimated that the annual electricity sale to commercial sector is 3.62 Billion Units (BU) in alone Karnataka State, India, which is an account for 9.57 % of the total electricity sold. The commercial sector constitutes Government & private establishments, hospitals, hotels, restaurants, educational institutions, malls etc. Total 326 commercial buildings in the state accounting for annual energy consumption of 1295.72 Million Units (MU) which works out to about 35% of the sectoral consumption. The annual energy savings potential for 326 commercial buildings is assessed to be 0.25 BU.

Keywords: commercial buildings, connected load, energy conservation studies, energy savings, energy efficiency, energy conservation strategy, energy efficiency, thermal energy, HVAC system

Procedia PDF Downloads 580