Search results for: cold molecule
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1321

Search results for: cold molecule

1201 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: excited state hydrogen transfer, supersonic expansion, gas phase spectroscopy, IR-UV double resonance spectroscopy, laser induced fluorescence, photoionization efficiency spectroscopy

Procedia PDF Downloads 73
1200 Getting to Know the Types of Asphalt, Its Manufacturing and Processing Methods and Its Application in Road Construction

Authors: Hamid Fallah

Abstract:

Asphalt is generally a mixture of stone materials with continuous granulation and a binder, which is usually bitumen. Asphalt is made in different shapes according to its use. The most familiar type of asphalt is hot asphalt or hot asphalt concrete. Stone materials usually make up more than 90% of the asphalt mixture. Therefore, stone materials have a significant impact on the quality of the resulting asphalt. According to the method of application and mixing, asphalt is divided into three categories: hot asphalt, protective asphalt, and cold asphalt. Cold mix asphalt is a mixture of stone materials and mixed bitumen or bitumen emulsion whose raw materials are mixed at ambient temperature. In some types of cold asphalt, the bitumen may be heated as necessary, but other materials are mixed with the bitumen without heating. Protective asphalts are used to make the roadbed impermeable, increase its abrasion and sliding resistance, and also temporarily improve the existing asphalt and concrete surfaces. This type of paving is very economical compared to hot asphalt due to the speed and ease of implementation and the limited need for asphalt machines and equipment. The present article, which is prepared in descriptive library form, introduces asphalt, its types, characteristics, and its application.

Keywords: asphalt, type of asphalt, asphalt concrete, sulfur concrete, bitumen in asphalt, sulfur, stone materials

Procedia PDF Downloads 65
1199 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity

Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys

Abstract:

In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.

Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity

Procedia PDF Downloads 141
1198 The Comparison between Modelled and Measured Nitrogen Dioxide Concentrations in Cold and Warm Seasons in Kaunas

Authors: A. Miškinytė, A. Dėdelė

Abstract:

Road traffic is one of the main sources of air pollution in urban areas associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered as traffic-related air pollutant, which concentrations tend to be higher near highways, along busy roads and in city centres and exceedances are mainly observed in air quality monitoring stations located close to traffic. Atmospheric dispersion models can be used to examine emissions from many various sources and to predict the concentration of pollutants emitted from these sources into the atmosphere. The study aim was to compare modelled concentrations of nitrogen dioxide using ADMS-Urban dispersion model with air quality monitoring network in cold and warm seasons in Kaunas city. Modelled average seasonal concentrations of nitrogen dioxide for 2011 year have been verified with automatic air quality monitoring data from two stations in the city. Traffic station is located near high traffic street in industrial district and background station far away from the main sources of nitrogen dioxide pollution. The modelling results showed that the highest nitrogen dioxide concentration was modelled and measured in station located near intensive traffic street, both in cold and warm seasons. Modelled and measured nitrogen dioxide concentration was respectively 25.7 and 25.2 µg/m3 in cold season and 15.5 and 17.7 µg/m3 in warm season. While the lowest modelled and measured NO2 concentration was determined in background monitoring station, respectively 12.2 and 13.3 µg/m3 in cold season and 6.1 and 7.6 µg/m3 in warm season. The difference between monitoring station located near high traffic street and background monitoring station showed that better agreement between modelled and measured NO2 concentration was observed at traffic monitoring station.

Keywords: air pollution, nitrogen dioxide, modelling, ADMS-Urban model

Procedia PDF Downloads 407
1197 The Experimental Study of Cold-Formed Steel Truss Connections Capacity: Screw and Adhesive Connection

Authors: Indra Komara, Kıvanç Taşkin, Endah Wahyuni, Priyo Suprobo

Abstract:

A series of connection tests that were composed of Cold-Formed Steel (CFS) sections were made to investigate the capacity of connections in a roof truss frame. The connection is controlled by using the two-different type of connection i.e. screws connection and adhesive. The variation of screws is also added applying 1 screw, 2 screws, and 3 screws. On the other hand, the percentage of adhesively material is increased by the total area of screws connection which is 50%, 75%, and 100%. Behaviors illustrated by each connection are examined, and the design capacities projected from the current CFS design codes are appealed to the experimental results of the connections. This research analyses the principal factors assisting in the ductile response of the CFS truss frame connection measured to propose recommendations for connection design, and novelty so that the connection respond plastically with a significant capacity for no brittle failure. Furthermore, the comparison connection was considered for the analysis of the connection capacity, which was estimated from the specimen’s maximum load capacity and the load-deformation behavior.

Keywords: adhesive, bolts, capacity, cold-formed steel, connections, truss

Procedia PDF Downloads 292
1196 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 149
1195 Molecular Dynamic Simulation of CO2 Absorption into Mixed Aqueous Solutions MDEA/PZ

Authors: N. Harun, E. E. Masiren, W. H. W. Ibrahim, F. Adam

Abstract:

Amine absorption process is an approach for mitigation of CO2 from flue gas that produces from power plant. This process is the most common system used in chemical and oil industries for gas purification to remove acid gases. On the challenges of this process is high energy requirement for solvent regeneration to release CO2. In the past few years, mixed alkanolamines have received increasing attention. In most cases, the mixtures contain N-methyldiethanolamine (MDEA) as the base amine with the addition of one or two more reactive amines such as PZ. The reason for the application of such blend amine is to take advantage of high reaction rate of CO2 with the activator combined with the advantages of the low heat of regeneration of MDEA. Several experimental and simulation studies have been undertaken to understand this process using blend MDEA/PZ solvent. Despite those studies, the mechanism of CO2 absorption into the aqueous MDEA is not well understood and available knowledge within the open literature is limited. The aim of this study is to investigate the intermolecular interaction of the blend MDEA/PZ using Molecular Dynamics (MD) simulation. MD simulation was run under condition 313K and 1 atm using NVE ensemble at 200ps and NVT ensemble at 1ns. The results were interpreted in term of Radial Distribution Function (RDF) analysis through two system of interest i.e binary and tertiary. The binary system will explain the interaction between amine and water molecule while tertiary system used to determine the interaction between the amine and CO2 molecule. For the binary system, it was observed that the –OH group of MDEA is more attracted to water molecule compared to –NH group of MDEA. The –OH group of MDEA can form the hydrogen bond with water that will assist the solubility of MDEA in water. The intermolecular interaction probability of –OH and –NH group of MDEA with CO2 in blended MDEA/PZ is higher than using single MDEA. This findings show that PZ molecule act as an activator to promote the intermolecular interaction between MDEA and CO2.Thus, blend of MDEA with PZ is expecting to increase the absorption rate of CO2 and reduce the heat regeneration requirement.

Keywords: amine absorption process, blend MDEA/PZ, CO2 capture, molecular dynamic simulation, radial distribution function

Procedia PDF Downloads 293
1194 2,7-diazaindole as a Potential Photophysical Probe for Excited State Deactivation Processes

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among scientific community over past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered as a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phase. Derivatives of above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are a few studies in the solution phase which suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy i.e. fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1 whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red shifted transition in case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV, which is significantly higher that the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronic excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: photoinduced tautomerization reactions, gas phse spectroscopy, ), IR-UV double resonance spectroscopy, resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)

Procedia PDF Downloads 84
1193 A Novel Concept of Optical Immunosensor Based on High-Affinity Recombinant Protein Binders for Tailored Target-Specific Detection

Authors: Alena Semeradtova, Marcel Stofik, Lucie Mareckova, Petr Maly, Ondrej Stanek, Jan Maly

Abstract:

Recently, novel strategies based on so-called molecular evolution were shown to be effective for the production of various peptide ligand libraries with high affinities to molecular targets of interest comparable or even better than monoclonal antibodies. The major advantage of these peptide scaffolds is mainly their prevailing low molecular weight and simple structure. This study describes a new high-affinity binding molecules based immunesensor using a simple optical system for human serum albumin (HSA) detection as a model molecule. We present a comparison of two variants of recombinant binders based on albumin binding domain of the protein G (ABD) performed on micropatterned glass chip. Binding domains may be tailored to any specific target of interest by molecular evolution. Micropatterened glass chips were prepared using UV-photolithography on chromium sputtered glasses. Glass surface was modified by (3-aminopropyl)trietoxysilane and biotin-PEG-acid using EDC/NHS chemistry. Two variants of high-affinity binding molecules were used to detect target molecule. Firstly, a variant is based on ABD domain fused with TolA chain. This molecule is in vivo biotinylated and each molecule contains one molecule of biotin and one ABD domain. Secondly, the variant is ABD domain based on streptavidin molecule and contains four gaps for biotin and four ABD domains. These high-affinity molecules were immobilized to the chip surface via biotin-streptavidin chemistry. To eliminate nonspecific binding 1% bovine serum albumin (BSA) or 6% fetal bovine serum (FBS) were used in every step. For both variants range of measured concentrations of fluorescently labelled HSA was 0 – 30 µg/ml. As a control, we performed a simultaneous assay without high-affinity binding molecules. Fluorescent signal was measured using inverse fluorescent microscope Olympus IX 70 with COOL LED pE 4000 as a light source, related filters, and camera Retiga 2000R as a detector. The fluorescent signal from non-modified areas was substracted from the signal of the fluorescent areas. Results were presented in graphs showing the dependence of measured grayscale value on the log-scale of HSA concentration. For the TolA variant the limit of detection (LOD) of the optical immunosensor proposed in this study is calculated to be 0,20 µg/ml for HSA detection in 1% BSA and 0,24 µg/ml in 6% FBS. In the case of streptavidin-based molecule, it was 0,04 µg/ml and 0,07 µg/ml respectively. The dynamical range of the immunosensor was possible to estimate just in the case of TolA variant and it was calculated to be 0,49 – 3,75 µg/ml and 0,73-1,88 µg/ml respectively. In the case of the streptavidin-based the variant we didn´t reach the surface saturation even with the 480 ug/ml concentration and the upper value of dynamical range was not estimated. Lower value was calculated to be 0,14 µg/ml and 0,17 µg/ml respectively. Based on the obtained results, it´s clear that both variants are useful for creating the bio-recognizing layer on immunosensors. For this particular system, it is obvious that the variant based on streptavidin molecule is more useful for biosensing on glass planar surfaces. Immunosensors based on this variant would exhibit better limit of detection and wide dynamical range.

Keywords: high affinity binding molecules, human serum albumin, optical immunosensor, protein G, UV-photolitography

Procedia PDF Downloads 364
1192 Building Scalable and Accurate Hybrid Kernel Mapping Recommender

Authors: Hina Iqbal, Mustansar Ali Ghazanfar, Sandor Szedmak

Abstract:

Recommender systems uses artificial intelligence practices for filtering obscure information and can predict if a user likes a specified item. Kernel mapping Recommender systems have been proposed which are accurate and state-of-the-art algorithms and resolve recommender system’s design objectives such as; long tail, cold-start, and sparsity. The aim of research is to propose hybrid framework that can efficiently integrate different versions— namely item-based and user-based KMR— of KMR algorithm. We have proposed various heuristic algorithms that integrate different versions of KMR (into a unified framework) resulting in improved accuracy and elimination of problems associated with conventional recommender system. We have tested our system on publically available movies dataset and benchmark with KMR. The results (in terms of accuracy, precision, recall, F1 measure and ROC metrics) reveal that the proposed algorithm is quite accurate especially under cold-start and sparse scenarios.

Keywords: Kernel Mapping Recommender Systems, hybrid recommender systems, cold start, sparsity, long tail

Procedia PDF Downloads 337
1191 Evaluation of Possible Application of Cold Energy in Liquefied Natural Gas Complexes

Authors: А. I. Dovgyalo, S. O. Nekrasova, D. V. Sarmin, A. A. Shimanov, D. A. Uglanov

Abstract:

Usually liquefied natural gas (LNG) gasification is performed due to atmospheric heat. In order to produce a liquefied gas a sufficient amount of energy is to be consumed (about 1 kW∙h for 1 kg of LNG). This study offers a number of solutions, allowing using a cold energy of LNG. In this paper it is evaluated the application turbines installed behind the evaporator in LNG complex due to its work additional energy can be obtained and then converted into electricity. At the LNG consumption of G=1000kg/h the expansion work capacity of about 10 kW can be reached. Herewith-open Rankine cycle is realized, where a low capacity cryo-pump (about 500W) performs its normal function, providing the cycle pressure. Additionally discussed an application of Stirling engine within the LNG complex also gives a possibility to realize cold energy. Considering the fact, that efficiency coefficient of Stirling engine reaches 50 %, LNG consumption of G=1000 kg/h may result in getting a capacity of about 142 kW of such a thermal machine. The capacity of the pump, required to compensate pressure losses when LNG passes through the hydraulic channel, will make 500 W. Apart from the above-mentioned converters, it can be proposed to use thermoelectric generating packages (TGP), which are widely used now. At present, the modern thermoelectric generator line provides availability of electric capacity with coefficient of efficiency up to 15%. In the proposed complex, it is suggested to install the thermoelectric generator on the evaporator surface is such a way, that the cold end is contacted with the evaporator’s surface, and the hot one – with the atmosphere. At the LNG consumption of G=1000 kgг/h and specified coefficient of efficiency the capacity of the heat flow Qh will make about 32 kW. The derivable net electric power will be P=4,2 kW, and the number of packages will amount to about 104 pieces. The carried out calculations demonstrate the research perceptiveness in this field of propulsion plant development, as well as allow realizing the energy saving potential with the use of liquefied natural gas and other cryogenics technologies.

Keywords: cold energy, gasification, liquefied natural gas, electricity

Procedia PDF Downloads 272
1190 Enhancing Warehousing Operation In Cold Supply Chain Through The Use Of IOT And Lifi Technologies

Authors: Sarah El-Gamal, Passent Hossam, Ahmed Abd El Aziz, Rojina Mahmoud, Ahmed Hassan, Dalia Hilal, Eman Ayman, Hana Haytham, Omar Khamis

Abstract:

Several concerns fall upon the supply chain, especially the cold supply chain. According to the literature, the main challenges in the cold supply chain are the distribution and storage phases. In this research, researchers focused on the storage area, which contains several activities such as the picking activity that faces a lot of obstacles and challenges The implementation of IoT solutions enables businesses to monitor the temperature of food items, which is perhaps the most critical parameter in cold chains. Therefore, researchers proposed a practical solution that would help in eliminating the problems related to ineffective picking for products, especially fish and seafood products, by using IoT technology, most notably LiFi technology. Thus, guaranteeing sufficient picking, reducing waste, and consequently lowering costs. A prototype was specially designed and examined. This research is a single case study research. Two methods of data collection were used; observation and semi-structured interviews. Semi-structured interviews were conducted with managers and decision maker at Carrefour Alexandria to validate the problem and the proposed practical solution using IoTandLiFi technology. A total of three interviews were conducted. As a result, a SWOT analysis was achieved in order to highlight all the strengths and weaknesses of using the recommended Lifi solution in the picking process. According to the investigations, it was found that the use of IoT and LiFi technology is cost effective, efficient, and reduces human errors, minimize the percentage of product waste and thus save money and cost. Thus, increasing customer satisfaction and profits gained.

Keywords: cold supply chain, picking process, temperature control, IOT, warehousing, LIFI

Procedia PDF Downloads 189
1189 Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid

Authors: Evgeny V. Blagin, Aleksandr I. Dovgjallo, Dmitry A. Uglanov

Abstract:

This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls.

Keywords: cold energy, liquid natural gas, thermocompressor, regenerative heat exchanger

Procedia PDF Downloads 580
1188 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion

Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka

Abstract:

Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.

Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging

Procedia PDF Downloads 79
1187 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test

Procedia PDF Downloads 336
1186 Investigating Pack Boriding as a Surface Treatment for WC-Co Cold Forming Die Materials

Authors: Afshin Zohdi, Selçuk Özdemir, Mustafa Aksoy

Abstract:

Tungsten carbide-cobalt (WC-Co) is a widely utilized material for cold forming dies, including those employed in fastener production. In this study, we investigated the effectiveness of the pack boriding method in improving the surface properties of WC-Co cold forging dies. The boriding process involved embedding WC-Co samples, along with a steel control sample, within a chamber made of H13 tool steel. A boriding powder mixture was introduced into the chamber, which was then sealed using a paste. Subsequently, the samples were subjected to a temperature of 700°C for 5 hours in a furnace. Microstructural analysis, including cross-sectional examination and scanning electron microscopy (SEM), confirmed successful boron diffusion and its presence on the surface of the borided samples. The microhardness of the borided layer was significantly increased (3980 HV1) compared to the unborided sample (1320 HV3), indicating enhanced hardness. The borided layer exhibited an acceptable thickness of 45 microns, with a diffusion coefficient of 1.125 × 10-7 mm²/s, signifying a moderate diffusion rate. Energy-dispersive X-ray spectroscopy (EDS) mapping revealed an increase in boron content, desirable for the intended purpose, while an undesired increase in oxygen content was observed. Furthermore, the pin-on-disk wear test demonstrated a reduction in friction coefficient, indicating improved mechanical and tribological properties of the surface. The successful implementation of the pack boriding process highlights its potential for enhancing the performance of WC-Co cold forging dies.

Keywords: WC-Co, cold forging dies, pack boriding, surface hardness, wear resistance, microhardness, diffusion coefficient, scanning electron microscopy, energy-dispersive X-ray spectroscopy

Procedia PDF Downloads 70
1185 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming

Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale

Abstract:

This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.

Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling

Procedia PDF Downloads 485
1184 The Molecule Preserve Environment: Effects of Inhibitor of the Angiotensin Converting Enzyme on Reproductive Potential and Composition Contents of the Mediterranean Flour Moth, Ephestia kuehniella Zeller

Authors: Yezli-Touiker Samira, Amrani-Kirane Leila, Soltani Mazouni Nadia

Abstract:

Due to secondary effects of conventional insecticides on the environment, the agrochemical research has resulted in the discovery of novel molecules. That research work will help in the development of a new group of pesticides that may be cheaper and less hazardous to the environment and non-target organisms which is the main desired outcome of the present work. Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on reproduction of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). The compound is diluted in acetone and applied topically to newly emerged pupae (10µg/ 2µl). The effects of this molecule was studied,on the biochemistry of ovary (on amounts nucleic acid, proteins, the qualitative analysis of the ovarian proteins and the reproductive potential (duration of the pre-oviposition, duration of the oviposition, number of eggs laid and hatching percentage). Captopril reduces significantly quantity of ovarian proteins and nucleic acid. The electrophoresis profile reveals the absence of tree bands at the treated series. This molecule reduced the duration of the oviposition period, the fecundity and the eggviability.

Keywords: environment, ephestia kuehniella, captopril, reproduction, the agrochemical research

Procedia PDF Downloads 284
1183 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells

Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin

Abstract:

Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².

Keywords: chromophore, organic solar cells, photoactive materials, small molecule

Procedia PDF Downloads 161
1182 Polish Operational Plans During Cold War as Part of Warsaw Pact Strategic Culture

Authors: Wiktor Stypczyński

Abstract:

During the Cold War, both sides of the conflict developed advanced operational plans in case of a Third World War outbreak. In the Warsaw Pact, Soviet generals in Moscow chose targets for each army, but each country's General Staff had to create specific plans for their nation. This led to the creation of a Strategic Culture within the Warsaw Pact that was reflected in the plans of each army. This paper aims to showcase the Strategic Culture of the Warsaw Pact by using the plans of the People's Polish Army as an example. Examining one army at a time will allow for a more detailed and unique perspective on the matter. Understanding the past Strategic Culture is crucial in comprehending the current post-Soviet strategic situation in Eastern Europe, especially with the current situation in Ukraine. This paper is based on Benon Miśkiewicz's classic methodology of military history. While this methodology is the foundation, the research findings will also draw on the Strategic Studies methodology and the accomplishments of war and military science. Additionally, the Security and Political Studies methodology will be a crucial element in constructing the narrative.

Keywords: cold war, operetional plans, strategic culture, polish people's army

Procedia PDF Downloads 71
1181 Effect of Different Temperatures and Cold Storage on Pupaes Apanteles gelechiidivoris Marsh (Hymenoptera: Braconidae) Parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)

Authors: Jessica Morales Perdomo, Daniel Rodriguez Caicedo, Fernando Cantor Rincon

Abstract:

Tuta absoluta known as the tomato leaf miner, is one of the main pests in tomato crops in South America and the main pest in many European countries. Apanteles gelechiidivoris is a parasitoid of third instar Tuta absoluta larvae. Our studies have demonstrated that this parasitoid can cause up to 80% mortality of T. absoluta larvae in the field. We investigated cold storage of A. gelechiidivoris pupae as a method of mass production of this parasitoid. This storage method does not interfere with biological characteristics of the parasitoid. In this study, we evaluated the effect of different temperatures (4, 8 and 12°C) and different time duration (7, 14, 21 or 28 days) of cold storage on biological parameters of A. gelechiidivoris pupae and adults. The biological parameters of the parasitoid evaluated were: adult emergence time, lifespan, parasitism percentage and sex ratio. We found that the adult emergence time was delayed when the parasitoid pupae were stored at 4°C and 8°C. The shortest adult emergence was recorded when pupae were stored for seven days. The lowest adult emergence was found for pupae stored at 4°C and decreased significantly as the days of storage increased. We found high percentages of adult emergence when pupae were stored at 8°C and 12°C for seven days. Adult lifespan decreased with increasing days of cold storage. Adults emerging from pupae stored at 8°C during seven and 14 days showed the longest lifespan (nine days). The lowest parasitism rate was recorded at 4°C at every time point. The highest percentage of parasitism (80%) was found at 8°C during seven days of storage. The treatments had no effect on adults the sex ratio. The results suggest that A. gelechiidivoris pupae can be stored for up to 14 days at 8°C without affecting the efficacy of the parasitoid in the field.

Keywords: biological control, cold storage, massive rearing, quality control

Procedia PDF Downloads 372
1180 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering

Authors: Dong Nyoung Heo, Il Keun Kwon

Abstract:

Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.

Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing

Procedia PDF Downloads 112
1179 Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet

Authors: Soumendu Monia, Vaibhav Jain, Hrishikesh Jugade, Manashi Adhikary, Goutam Mukhopadhyay

Abstract:

'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture.

Keywords: annealing, rolled in scale, rolled in scum, skin panel

Procedia PDF Downloads 185
1178 Microorganisms in Fresh and Stored Bee Pollen Originated from Slovakia

Authors: Vladimíra Kňazovická, Mária Dovičičová, Miroslava Kačániová, Margita Čanigová

Abstract:

The aim of the study was to test the storage of bee pollen at room temperature and in cold store, and to describe microorganisms originated from it. Fresh bee pollen originating in West Slovakia was collected in May 2010. It was tested for presence of particular microbial groups using dilution plating method, and divided into two parts with different storage (in cold store and at room temperature). Microbial analyses of pollen were repeated after one year of storage. Several bacterial strains were isolated and tested using Gram staining, for catalase and fructose-6-phosphate-phosphoketolase presence, and by rapid ID 32A (BioMérieux, France). Micromycetes were identified at genus level. Fresh pollen contained coliform bacteria, which were not detected after one year of storage in both ways. Total plate count (TPC) of aerobes and anaerobes and of yeasts in fresh bee pollen exceeded 5.00 log CFU/g. TPC of aerobes and anaerobes decreased below 2.00 log CFU/g after one year of storage in both ways. Count of yeasts decreased to 2.32 log CFU/g (at room temperature) and to 3.66 log CFU/g (in cold store). Microscopic filamentous fungi decreased from 3.41 log CFU/g (fresh bee pollen) to 1.13 log CFU/g (at room temperature) and to 1.89 log CFU/g (in cold store). In fresh bee pollen, 12 genera of micromycetes were identified in the following order according to their relative density: Penicillium > Mucor > Absidia > Cladosporium, Fusarium > Alternaria > Eurotium > Aspergillus, Rhizopus > Emericella > Arthrinium and Mycelium sterilium. After one year at room temperature, only three genera were detected in bee pollen (Penicillium > Aspergillus, Mucor) and after one year in cold store, seven genera were detected (Mucor > Penicillium, Emericella > Aspergillus, Absidia > Arthrinium, Eurotium). From the plates designated for anaerobes, eight colonies originating in fresh bee pollen were isolated. Among them, a single yeast isolate occurred. Other isolates were G+ bacteria, with a total of five rod shaped. In three out of these five, catalase was absent and fructose-6-phosphate-phosphoketolase was present. Bacterial isolates originating in fresh pollen belonged probably to genus Bifidobacterium or relative genera, but their identity was not confirmed unequivocally. In general, cold conditions are suitable for maintaining the natural properties of foodstuffs for a longer time. Slight decrease of microscopic fungal number and diversity was recorded in cold temperatures compared with storage at room temperature.

Keywords: bacteria, bee product, microscopic fungi, biosystems engineering

Procedia PDF Downloads 342
1177 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 117
1176 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes

Procedia PDF Downloads 376
1175 Semen Characteristics of Ram Semen Frozen in Straw and Pellet in Three Type of Cold Plates

Authors: Abdurzag Kerban

Abstract:

Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the viability of ram spermatozoa after freezing pellet using cold surfaces made from cattle fat and paraffin wax. A pool of three to four ejaculates were pooled from six rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw and 0.1 ml pellets. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (aspartat aminotransferase and alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant percentages of motility at 0, 1, 2 and 3 hours incubation after thawing and viability index in 0.25 ml straw and 0.1 ml pellets on cattle fat plate as compared to ram spermatozoa frozen on paraffin wax. In conclusion, cattle fat plate could be used as the cold surface of choice for freezing ram semen in form of pellets. Such form of frozen semen could be used as efficiently as semen frozen in straws. This simple method is economical with little expensive equipment or supplies, and may provide an efficient technique to cryopreserve ram spermatozoa in developing countries.

Keywords: ram semen, freezing, straw, pellet

Procedia PDF Downloads 589
1174 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model

Procedia PDF Downloads 361
1173 A Potential Bio-Pesticidal Molecule Derived from Indian Traditional Plant

Authors: Bunindro Nameirakpam, Sonia Sougrapakam, Shannon B. Olsson, Rajashekar Yallappa

Abstract:

Natural sources for new pesticidal compounds hold promise in view of their eco-friendly nature, selectivity and mammalian safety. Despite a large number of plants that show insecticidal activity and diversity of natural chemistry with inherent eco-friendly nature, newer classes of insecticides have eluded discovery. Artemisia vulgaris, known as Mugwort, is a universal herb used for folk medicine and religious purposes throughout the ancient world. In India, the essential oils of Artemisia vulgaris are used for its insecticidal, anti parasiticidal and antimicrobial properties. Traditionally, the dried leaves of Artemisia vulgaris are used to repel insects as well as rats in and around the granaries in the North-East India. Artemisia vulgaris collected during November from different ecological sites were studied for the bio-pesticidal utility against the stored grain pests. The insecticidal activities were found in the crude extracts of n-hexane and methanol from the samples collected in Sikkim and Manipur respectively. Using silica gel column chromatography protocol, we have isolated one novel bioactive molecule from the aerial parts of Artemisia vulgaris L based on various physical-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and mass). The novel bioactive molecule is highly toxic and very low concentration (4.35 µg/l) is needed to control the stored product insects. In additional experiment results clearly showed the involvement of sodium pumps inhibition in the insecticidal action of purified compound in the Sitophilus oryzae. The knockdown activity of the purified compound is concomitant with the in vivo inhibition of Na+/ K+- ATPase. Further, our study showed insignificant differences in the seed germination of control and the treated grains. The lack of adverse effect of the novel bioactive molecule on the seed germination is highly desirable for seed/grain protectant and showing the potential to be developed as possible natural fumigants for the control of stored grain pests. The novel bioactive molecule is selective insecticide with a high margin of safety to mammals and showed promise as novel biopesticide candidate for grain protection. It is believed that Bio-pesticides can serve as the most important pest management tools as far as global safety is concerned.

Keywords: Indian traditional plant, Artemisia vulgaris, bio-pesticides, Na+/ K+- ATPase, seed germination

Procedia PDF Downloads 197
1172 Optimal Path Motion of Positional Electric Drive

Authors: M. A. Grigoryev, A. N. Shishkov, N. V. Savosteenko

Abstract:

The article identifies optimal path motion of positional electric drive, for example, the feed of cold pilgering mill. It is shown that triangle is the optimum shape of the speed curve, and the ratio of its sides depends on the type of load diagram, in particular from the influence of the main drive of pilgering mill, and is not dependent on the presence of backlash and elasticity in the system. This thesis is proved analytically, and confirmed the results are obtained by a mathematical model that take into account the influence of the main drive-to-drive feed. By statistical analysis of oscillograph traces obtained on the real object allowed to give recommendations on the optimal control of the electric drive feed cold pilgering mill 450. Based on the data that the load torque depends on by hit the pipe in rolls of pilgering mill, occurs in the interval (0,6…0,75) tc, the recommended ratio of start time to the braking time is 2:1. Optimized path motion allowed get up to 25% more RMS torque for the cycle that allowed increased the productivity of the mill.

Keywords: optimal curve speed, positional electric drive, cold pilgering mill 450, optimal path motion

Procedia PDF Downloads 316